Name of the Department : Department of Animal Science

Name of the Programme : M.Sc. Zoology

1. VISION AND MISSION OF UNIVERSITY:

Vision

> "To provide quality education to reach the un-reached "

Mission

- To conduct research, teaching and outreach programmes to improve conditions of human living
- To create an academic environment that honours women and men of all races, caste, creed, cultures and an atmosphere that values intellectual curiosity, pursuit of knowledge, academic freedom and integrity
- To offer a wide variety of off-campus educational and training programs, including the use of information technology, to individuals and groups.
- To develop partnership with industries and government so as to improve the quality of the workplace and to serve as catalyst for economic and cultural development
- To provide quality / inclusive education, especially for the rural and un-reached segments of economically downtrodden students including women, socially oppressed and differently abled

2. VISION AND MISSION OF DEPARTMENT

Vision

➢ To attain Academic Excellence in Animal Science and Manpower Development

Mission

- > To provide quality education and research in the area of Animal Science
- > Generating Research Grant &Establishing high end research facilities.
- Understanding the impact of Global warming on distribution, diversity and metabolic process of animals
- Enhancing the animal health through novel eco-friendly bio-molecules from renewable and bio-waste resources.
- Assessing Genetic variations and Barcoding of Animals

3. PREAMBLE

It is now evident that animals are abundantly distributed in diversified environments. On diversity aspect also animals are numerous, and so many aspects of animal life have been uncovered. More than 99 percent of all species, amounting to over five billion species, that have evolved on Earth are estimated to be extinct. Estimates on the number of Earth's current species range from 10 million to 14 million of which about 1.2 million have been documented over 86 percent have not yet been described. Scientists have reported that animals occupied 63% of the life in this planet. One trillion species are estimated to be on Earth of which only one-thousandth of one percent described.

Study of Zoology is the basic for understanding of the fauna of the world. Zoology is the branch of biology that includes the study of animals and animal life, including the taxonomy and diversity of animals, evolutionary significance, functional morphology, their physiology, reproduction, genetical hereditary lineages and their curative measure.

Zoology has diversified into a countless of allied sciences including cell and molecular biology, microbiology, biochemistry and immunology. Zoological Knowledge and theories are applicable to maintain health and diversity of animal and also to control the epidemic diseases. Various types of living organisms are closely associated in a particular environment and interaction of prey-predator relationship, food chain in the biodiversity. Various by-products of animals such as coral, pearl, honey, wax, silk, lac, shell of turtle, bones, feather, tusk, leather and fur are of high demand. These products can be increased from our knowledge. The improvement of farm/domestic animals is one of the major tasks of zoologists. Application of zoological science in fisheries, cattle, poultry farming and pests management in agriculture and stored food grains are well known. It is the study of economic zoology for the higher production of food crops and fisheries to meet the challenge of protein rich food materials at the reasonable cost. An education in Zoology enables one to start a career working in any of the broad levels of life, from working on the cellular level, to working on a specific species or individual animal, or all the way up to working on total ecosystems or the whole biosphere.

Scope for Zoologist

The Service of the trained zoologist is the need of the hour because of the development of advanced technologies in uncounteless areas. Due to global warming and climate change and also due to pollution, environment is getting deteriorate day by day. Both national and State pollution control board required the service of Zoologist for the proper assessment of environmental damage (EIA study) and also to propose strategies for environment management and systematic documentation. Zoologists are also hired in various National and International agencies involved in zoological survey and conservation like WWF, IUCN, ZSI, WII, NBA, MoEF. Zoologists do have scope in Zoo keeping, Zoo Curation, Wildlife services, Botanical gardens, National parks, nature reserves, universities, laboratories, aquariums, animal clinics, fisheries and aquaculture, museums, research, pharmaceutical Companies, veterinary hospitals and Food Corporation of India (FCI) etc. Zoologist are also engaged as Animal Behaviorists, Animal breeders, Animal Trainers, Animal Caretakers, Animal and Wildlife Educators, Conservationists, Documentary Maker, Forensic Experts, Lab Technicians, Researcher, Wildlife Biologists, Veterinarian, and many more. Thus the scope of applied Zoology is innumerable. Zoologist can also work in Zoological Teaching and Research, Medicine, Dentistry, Veterinary Medicine, Medical Technology, Nursing, Museum Work, Environmental Science and Conservation. Further, channels like National Geographic, Animal Planet, Discovery Channel is in constant need of Zoologists for research and documentaries.

Eligibility for Admission:

Those who have passed and secured ≥ 50 percentage marks in the following courses *viz.*, B.Sc. Zoology, B. Sc. Advanced Zoology, B.Sc. Applied Zoology, B.Sc. Animal Science and Biotechnology, B.Sc. Advanced Zoology and Biotechnology, B.Sc. Life Science and B.Sc. Biology (Hons.) from recognized University are eligible to apply.

4. PROGRAMME STRUCTRURE FOR THE P.G. DEGREE M.Sc. ZOOLOGY IN UNIVERSITY DEPARTMENT (With effect from the academic year 2022-2023 onwards) MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI Course Structure under Choice Based Credit System

Semester	Subject Status	Subject Title	Course Code	Contact Hrs./Week	Credi
	Core-I	Structure and function of Invertebrates	NZOC11	4	4
	Core-II	Comparative anatomy of chordates	NZOC12	4	4
	Core-III	Environmental Biology	NZOC13	4	4
	Core-IV	Animal Biodiversity	NZOC14	4	4
	Core Pract I	Course covering Core I & II	NZOL11	4	2
	Core Pract II	Course covering Core III & IV	NZOL12	4	2
Ι	Elective I – (E- Pathsala-1)	Animal Cell Biotechnology (E-Pathsala-1)	NZOEPA	3	3
		1. Entrepreneurial Mushroom Cultivation	NZOEA		
	Elective-I	2. Apiculture	NZOEB	2	2
		3. Seaweed culture and its Bioprospecting	NZOEC	3	3
		4. Aquaculture	NZOED		
		Sub Total		27	23
	Core V	Biochemistry	NZOC21	4	4
	Core VI	Cell and Molecular Biology	NZOC22	4	4
	Core VII	Developmental Biology	NZOC23	4	4
	Core VIII	Microbiology	NZOC24	4	4
Π	Core Pract III	Course covering Core V & VI	NZOL21	4	2
	Core Pract IV	Course covering Core VII & VIII		4	2
	Internship	15-20 days (80-100 hours) training/mini project during the vacation period with compulsory report submission	NZOI21	-	2
	Supp. Course I	MOOC-1		3	3
		Sub Total	on	27	25
	Core IX	Comparative Animal Physiology	NZOC31	4	4
	Core X	Immunology	NZOC32	4	4
	Core XI	Genetics	NZOC33	4	4
	Core XII	Bioinstrumentation	NZOC34	4	4
	Core Pract V	Course covering Core IX & X	NZOC31	4	2
	Core Pract VI	Course covering Core XI & XII	NZOC32	4	2
III	Elective II	 Essentials of Biological Research Applied Entomology Biofouling and Bioremediation Fish Processing Techniques 	NZOEE NZOEF NZOEG NZOEH	3	3
	Supp. course II	MOOC-2		3	3
		Sub Total		30	26
	Core- XIII	Evolution	NZOC41	4	4
	Core- XIV	Biostatistics & Computer Application	NZOC42	4	4
IV	Elective - ii (E- Pathsala-2)	Computational Biology (E-Pathsala-2)	NZOEPB	3	3
	Core Pract VII	Course covering Core XIII & XIV	NZOL41	4	2
		Project		12	6
		Sub Total		27	19
		Total		111	93

5. EVALUATION SCHEME

Practical Examination:

M.Sc. Zoology Core Practical Examination having the following marks:

Internal – 50

Major Practical Minor Practical Spotters (ABC&D) 4 x 5	= = =	20 marks 10 marks 20 marks
Total	=	50 marks
External – 50		
Major Practical	=	15 marks
Minor Practical	=	10 marks
Spotters (ABC&D) 4x5	=	20 marks
Record & Viva-voce	=	5 marks
Total	=	50 marks

Theory Examination:

The M.Sc. Zoology core and Elective theory Examination having the following marks. **Internal Marks – 25**

111111111111111111111111111111111111			
Test		=	15 marks
Assignment		=	5 marks
Seminar		=	5 marks
	Total	=	25 marks
External Marks – 7	5		
Section A: 10	x 1	=	10 marks
(Q.No. 1 to 10))		
Section B: 5 x	x 5	=	25 marks
(Q.No. 11 to 2	15)		
Section C: 5 x	x 8	=	40 marks
(Q.No. 16 to 2	20)		
	Total	=	75 marks

Grading System

Distribution of Credits	No. of papers	Credits	Hours	Total Credits	Total Grade Points
Core Theory	14	4	4	56	5600
Practical Papers	7	2	4	14	1400
Electives	3	3	6	9	900
Supportive courses	2	3	3	6	600
Internship/Mini Project	1	2	90	2	200
Dissertation/Project /Viva Voce	1	6	12	6	600
Cumulative Grade Points Average (CGPA) = Grade Points /Total Credits				9300/93	100 %

Evaluation of performance of students is based on ten-point scale grading system as given below

S.No	PERCENTAGE OF MARKS	LETTER GRADE	GRADE POINT	PERFORMANCE
1	90-100	O+	10	Outstanding
2	80-89	0	9	Excellent
3	70-79	A+	8	Very Good
4	60-69	А	7	Good
5	55-59	B+	6	Above average
6	50-54	В	5	Pass
7	0-49	RA	-	Reappear
8	0	AA	-	Absent

Cumulative Grade Point Average = $\frac{\Sigma(C \times GP)}{\Sigma C}$

CGPA for a semester is awarded on cumulative basis by including all the courses upto that semester provided the candidate has passed all he courses

5. MODEL QUESTION PAPER

QUESTION PAPER PATTERN FOR UNIVERSITY EXAMINATION M.Sc. Zoology Degree Examination

Total: 3 Hours 75

Max. Marks:

(10 X 1 = 10 marks)

Choose the correct answer Each question carries equal marks

PART – A

 Identify the microscope which is bes a. Phase contrast Microscope c. Scanning Electron Microscope 	t suited to get the surface topography of a sample. b. Fluorescent Microscope d. Compound Microscope
2. The acidity and alkalinity of a solutional and alka	
3. Which of the following is NOT consa. Cellulose and Dextranc. Polyimidine and Sericin	sidered as stationary phase in column chromatography? b. Polyacrylamide and Polystyrene d. Silica gel
a. Affinity chromatographyb.c. HPLCd.5. If the protein is initially at a pH ranga. Positiveb.	eparated on the basis of their net charge is called . Ion exchange chromatography . GC-MS ge below its isoelectric point the protein will be . Negative . Zwitterionic
6. Identify the correct pair of molecular a. 1 aminoacid = 109 Da and 1Kb = 10 c. 1 aminoacid = 100 Da and 1kb = 101	1 bp b. 1 aminoacid = 120 Da and 1 Kb = 110 bp
7. Glowing of GFP in jelly fish is duea. Serine, Leucine and Aspartic acidc. Sericin, Tyrosine and Isoleucine	to occurrence of amino acids. b. Serine, Tryptophan and Glutamic acid d. Serine, Tyrosine and Glycine
8. The process of binding of primer to ta. Denaturationc. Annealing	the denatured DNA strand is called as b. Renaturation d. None of the above
9. Molecules containing radioisotopes aa. Isoelectric focusingc. Autoradiography	b. Chromatographyd. Gram staining
10. Mass number of atom is the sum ofa. Electrons and protonsc. Neutrons and positrons	F number ofb. Electrons and neutronsd. Neutrons and protons

PART – B

Answer ALL the Questions choosing either (a) or (b)

11.a. Briefly explain the principle and working of light microscope.

(or)

b. List out the sequential steps involved in Gram staining.

12. a. Explain briefly the principle and instrumentation of HPLC.

(or)

b. Describe the principle and working of anion exchange chromatography.

13. a. Write a brief account on separation of nucleic acids by Agarose gel electrophoresis.

(or)

b. Write short notes on Isoelectric focusing.

14. a. Describe briefly the working mechanism and applications of fluorescence spectroscopy.

(or)

b. Differentiate between Turbidometry and Nephlometry.

15.a. Describe how the concentration of antigen is measured by RIA technique.

(or)

b. Give a brief account on autoradiography.

PART – C

Answer ALL questions, choosing either (a) or (b)

16. a. Describe various components of SEM and its working mechanism.

(or)

b. Explain in detail about the construction and working of pH meter.

17.a. Write a detailed account on Gas chromatography.

(or)

b. Describe the instrumentation and working of FPLC.

18. a. What is PCR? Describe various stages of amplification of DNA by PCR technique.

(or)

b. Write an elaborate account on Western blotting.

19. a. Describe the working methodology and applications of AAS.

(or)

b. Explain the principle, components and working of UV-Vis spectroscopy.

20. a. Explain how GM counter is used to detect and measure ionizing radiations.

(or)

b. Write an essay on radioactive decay and its types.

(5 X 5= 25 Marks)

(5 X 8= 40 marks)

7. PROGRAMME OUTCOME (POS)

The programme aims to

1. Develop an individual from rural, unreached socio-economically downtrodden society with academic integrity, values and ethics.

2. Impart high level of education and understand the multidisciplinary, innovative, contemporary knowledge and will be able to do independent and applied research to be competent at national and international level.

3. Motivate and develop a passion for lifelong learning with capability in technique and analytical methods in the core and applied research.

4. Impart skill based, value added, employable, entrepreneurial, research oriented programmes to be self reliant.

5. Offer a milieu for basic and advanced research to develop research outputs that are transferrable technologies, patents and publications.

6. Offer courses and impart hands on scientific training for designing and execution of experiments to acquire higher education, research skills and employability in the reputed regional, national and international institutions

8. PROGRAMME SPECIFIC OUTCOMES (PSO)

After the successful completion of M.Sc. Zoology programme, the students will be able to

	Identify the diversity of organisms, differentiate them phylogenetically,
PSO1	morphologically and understand their habit and habitat, evolutionary significance, and
	their economic importance
DCO	Understand the cellular and molecular mechanisms of organisms, know the microbial
PSO2	interactions and biochemical modifications in various organisms.
	Understand the cell differentiation, genetic inheritance, developmental process of an
PSO3	organism, and know the modern techniques viz. rDNA, Tissue engineering and the
	Artificial Reproductive Technology process.
	Learn the basics of the animal physiology, know the immune cells and immune organs,
PSO4	process of innate and acquired defence mechanisms and their role in allergy and organ
	transplantation.
DGO	Design the experiments, know the methods of data collection and execute the
PSO5	experiments with modern instruments and interpret the data with recent statistical tools.
	Acquire knowledge on computational biological tools, know the biological database and
PSO6	sequence analysis methods, able to do molecular modelling and pharmacophore
	generation.
	Understand the structure and functional properties of manmade ecosystems, impact of
PSO7	climate change and global warming on living organisms, and conservation of natural
	resources, able to do EIA analysis.
	Acquire skill based aquaculture techniques, value added post harvest storage methods of
PSO8	fishery biology, employable animal husbandry techniques, and entrepreneurial
	apiculture and sericulture methods. Economic importance of animal species.

CORE PAPER I: STRUCTURE AND FUNCTION OF INVERTEBRATES

Semester	Ι
Course Type	CORE PAPER I
Title of the Course	STRUCTURE AND FUNCTION OF INVERTEBRATES
Course Code	NZOC11
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC11	STRUCTURE AND FUNCTION	Credits: 4	Max. Marks: 100
	OF INVERTEBRATES		

Course Prerequisites:

Know the salient features and life history of invertebrates.

CODE:	STRUCTURE AND FUNCTION OF	L	Т	Р	С
NZOC11			-	-	4
Course Objectives	 To impart knowledge on the structure and functional characteristics of diverse group of invertebrates. To illustrate the roots of invertebrate taxonomy and their classification. To identify the ecology, ethology and reproductive system of invertebrates. To know the medically importance of non-chordates. To learn about the adaptive radiation of invertebrates. To understand the evolutionary biology of invertebrates 				
Unit I	PRINCIPLE OF ANIMAL TAXON	OMY		15 ho	ours
Zoological Nomen Authors in Bracke ICZN and its ru	General characteristics of animal phyla- Classification of animal phyla upto order levels.Species concept- Taxonomic procedures- Animal collection, handling and preservation- Taxonomic Keys-Zoological Nomenclature: Nature of scientific names – Synonyms and Homonyms –Meanings of Authors in Brackets – Types: Holotypes, Paratype, Lectotype, Syntype, Neotype and Allotype – ICZN and its rules-New trends in taxonomy - Organization of coelom –Acoelomates – Pseudocoelomates - Coelomates: Protostomia and Deuterostomia.				
Unit II	LOCOMOTION AND FEEDING 14 hours				
Coelenterata, Ann	Pseudopodia - Flagella and ciliary movement in protozoa - Hydrostatic movement in Coelenterata, Annelida and Echinodermata - Nutrition and Digestion - Patterns of feeding and digestion in lower metazoan - Feeding diversity in insects -Filter feeding in Polychaeta, Mollusca and Echinodermata				
Unit III	RESPIRATION AND EXCRETION	DN		13 ho	urs
– Excretion - Org	Organs of respiration: gills, lungs and trachea - Respiratory pigments - Mechanism of respiration – Excretion - Organs of excretion: coelom, coelomoducts, nephridia and Malphigian tubules - Mechanisms of excretion - Excretion and osmoregulation				
Unit IV	NERVOUS SYSTEM & CHEMIC COORDINATION OF INVERTEBR			16 ho	urs
	11				

Primitive nervous system: Coelenterata and Echinodermata - Advanced nervous system: Annelida, Digestive Systems - Nervous and sensory system and Reproductive systems of **COORDINATION:**Neurohumours-Hormones Neuro invertebrates. CHEMICAL and Hormones-Endocrine Regulation in Crustaceans, Insects and annelids-Evolution of Endocrine system. Unit V

LARVAL FORMS

14 hours

Mode of larval development- larval forms of Protostome and Deuterostome Larvae- larval rms of free living parasites - evolutionary significance of larval forms - Minor Phyla -Structural features and affinity - Concept and significance - Organization and general characters.

ReferenceBooks

- ▶ Hyman, L.H.1967 The invertebrates. Vol.1 Protozoa through Ctenophora, McGraw Hill Co., New York.
- > Barrington, E.J.W. 1979Invertebrate structure and function. Thomas Nelson and Sons Ltd., London
- > Jagerstein, G.1979. Evolution of Metazoan life cycle, Academic Press, New York & London.
- ▶ Hyman, L.H.1967 The Invertebrates. Vol.2. McGraw Hill Co., New York.
- ▶ Hyman, L.H. 1969. The Invertebrates. Vol.8. McGraw Hill Co., New York and London.
- Barnes, R.D. 2006.Invertebrate Zoology, III edition. W.B. Saunders Co., Philadelphia.
- Russel-Hunter, W.D. 1979. A biology of higher Invertebrates, the Macmillan Co. Ltd., London
- Sedgwick, A. A.2000. student text book of Zoology. Vol.I, II and III. Central Book DePSOt, Allahabad.

Parker, T,J., Haswell, W.A.2003. Text Book of Zoology, Macmillan Co., London				
	https://study.com/academy/topic/invertebrates.html			
Wah Sauraa	https://nptel.ac.in/courses/102106035			
Web Source:	https://adlonlinecourses.com/product/courses/natural-sciences/animal-			
	care/invertebrate-zoology-			

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	CogintiveLevel
CO1	Describe the basics of taxonomy and nomenclature system and organization of body plan of invertebrates	K1, K2
CO2	Understanding the locomotory structure and their function of the diverse groups of non-chordates	K1,K2
CO3	Learn the physiology of respiratory and excretory system of invertebrates	K1,K2
CO4	Knowledge on the structure and function of nervous and reproductive system of invertebrates	K1, K2
CO5	Learn the evolutionary significance of larval forms of major and minor phyla of invertebrates.	K1,K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	L	М	L	L	L	L
CO2	М	Н	L	L	L	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	Н	Н	L	L	L	L	L	L
CO5	М	Н	L	L	L	L	L	L

CORE PAPER II: COMPARATIVE ANATOMY OF CHORDATES

Semester	I
Course Type	CORE PAPER II
Title of the Course	COMPARATIVE ANATOMY OF CHORDATES
Course Code	NZOC12
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC12	COMPARATIVE ANATOMY OF	Credits: 4	Max. Marks:
NZOCI2	CHORDATES	Creuits: 4	100

Course Prerequisites:

The student should have a basic knowledge on systemic and biological importance of vertebrates and understanding on evolutionary significance.

CODE:	COMPARATIVE ANATOMY OF	L	Т	Р	С		
NZOC12	CHORDATES	4	-	-	4		
	To have a comprehensive knowledge and get familiar with the general features and classification of animal kingdom.						
Course Objectives	To learn about the adaptive features of chordates and understand diversity of vertebrates.						
objectives	To understand the medical importance of v the economic importance of each phylum of			chordate	es and		
Unit I ORIGIN OF CHORDATA					15 hours		
General characters Classification up to level of order- habits and habitats of chordates, Systematic position, phylogeny and Affinities of <i>Balanoglossus</i> - Protochordata : Concept of protochordata,Significance, food and feeding mechanism- Represtative types and important							

features of Hemichordata- Affinities and systematic position of Herdmania- Characteristic features of Urochordata- Degenerate and Specialised characters of *Branchiostoma*-Cephalochordata:Primitive, Specialised characters of Branchiostoma.

Unit II	Unit II ORIGIN AND SYSTEMIC POSITION OF ANCESTRY VERTEBRATES						
Diversity and Ev	Diversity and Evolutionary history of vertebrates: Origin and Ancestry of Vertebrates,						
Importance of the study of vertebrate morphology- Ostracoderms: Silurian and Devonian							
Ostracoderms, Biological significance of Ostracoderms, Systematic and external features of							
Petromyzon, Structural peculiarities of Cyclostomata, - Earliest jawed vertebrates, importance							
features of Placodermi – Systemic and Economic importance of Scoliodon.							
	ADAPTIVE RADIATION IN VERTERRATES						

Unit III	ADAPTIVE RADIATION IN VERTEBRATES	12 hours
----------	-----------------------------------	----------

Origin of the following: Amphibian, Reptiles, Birds, Mammals- Adaptive radiation in Chordates: Aquatic, Terrestrial, Aerial, Arboreal, Fossoria- Migration of birds, Flightless birds, -Fossil bird Archaeopteryx and its evolutionary importance- Bony fish:Distribution, Integument, Economic importance.

Unit IV	FUNCTIONAL SYSTEMS OF VERTEBRATES	15 hours					
Respiratory system	Respiratory system - Characters of respiratory tissue - Internal and external respiration -						
Comparative accor	Comparative account of respiratory organs Excretory Systems: Urinary System- Structure and						
function of the Mammalian Kidney- Nervous system: Peripheral Nervous System and Central							
Nervous Systems-	Sensory Organs: Components of a sensory organs- General sensory	nsory organs.					

Unit V

VERTEBRATE INTEGUMENT AND SKELETAL SYSTEMS

15 hours

General features of the Vertebrate integument and its derivatives; Development, general structure and functions of skin and its derivatives - Glands, scales, horns, claws, nail, hoofs, feathers and hairs- Phylogeny-Specialization of the Integument-Skeletal System: The Skull- Introduction-Overview of Skull Morphology, Skull in various classes of vertebrates, Girdles and Limbs in Tetrapoda.

ReferenceBooks

- Kotpal, RL. 2019. Mordern Text Book of Zoology Vertebrates, 4th edition, Rastogi Publications, Meerut.
- E. L. Jordan and P.S. Verma, 2011.Chordate Zoology, S.Chand & CompanyLtd, New Delhi,.
- Alexander, R.M. 2005. The Chordata. Cambridge University Press, London. Miller and Harley: Zoology (6th ed., W.C. Brown)
- Weischert, C.K., 1965. Anatomy of Chordates, McGraw Hill Book Co., Inc., N.Y.
- Pough Harvey F, Christine M .Janis and John B. Heiser. 2002. Vertebrate Life, Pearson Education Inc. New Delhi.
- Route and Solanki.2002.Learning Prochordata- Mammalia –Theoryand Practice Dominant Pub. & Distributors, New Delhi.

Web Source:	https://nptel.ac.in/courses/102106035
-------------	---------------------------------------

Course Outcomes (COs):						
Course Outcome	After the Completion of the Course, the student will be able to –	CognitiveLevel				
CO1	Know the general characters, taxonomy and Classification upto level of order of vertebrates.	K1, K2				
CO2	Understand Diversity and Evolutionary history of vertebrates,	K1,K2				
CO3	Understand the adaptive radiation in Chordates Aquatic, Terrestrial, Aerial, Arboreal vertebrates.	K1,K2				
CO4	Understand the functional system of vertebrates and association with comparative anatomy of chordates.	K1, K2, K4				
CO5	Able to understand the development and function of integument system of vertebrates.	K1, K2, K4				

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	L	L	L	L	L	L
CO2	Н	Н	L	М	L	L	L	L
CO3	Н	L	М	М	L	L	L	L
CO4	Н	Н	L	М	L	L	L	L
CO5	М	L	L	Н	L	L	L	L

CORE PAPER III: ENVIRONMENTAL BIOLOGY

Semester	I
Course Type	CORE PAPER III
Title of the Course	ENVIRONMENTAL BIOLOGY
Course Code	NZOC13
Teaching Hours	72 Hours/ Semester : 4 Hours/ week
Teaching Hours	72 Hours/ Schicster : 4 Hours/ week

NZOC13	ENVIRONMENTAL BIOLOGY	Credits: 4	Max. Marks: 100

Course Prerequisites:

The student should possess basic knowledge on ecosystem, environmental pollution, natural disaster and conservation methods.

CODE:		L	Т	Р	С	
NZOC13	ENVIRONMENTAL BIOLOGY	4	-	-	4	
 Course Objectives To understand the life processes, adaptation and habitats, interactions and biodiversity of organisms. To know the impact of pollution and strategies to control and mitigate the effects of pollution on public health. Enable to understand the impact of climate change and global warming on living organisms and conservation of natural resources. 						
Unit I	ENVIRONMENT AND ECOSYST	TEM		15 h	ours	
Biotic and abiotic interactions – Habitat and Niche: Concepts of habitat and niche – Niche width and overalp – Fundamental and realize niche, resource partition – Ecosystem : Concept – structure – Importance - Food chain and food web – Energy flow – Trophic structure and levels – Pyramids – Biogeochemical cylces: Complete and Incomplete biogeochemical cycles – Sedimentary cycle in tropics.						
Unit II	POPULATION AND COMMUNITY EC	Ϋ́	15 hours			
strategy (r and l competition, herbi	Characteristics of population; population growth curve; population regulation – Life history strategy (r and k – selection) – Species interaction – Types of interaction; Interspecific, competition, herbivory, carnivory, pollination, symbiosis – Community structure and attributes; Levels of species diversity and its measurement; edges and ecotones – Ecology succession: types –					
Unit III	ECOLOGY OF ECOSYSTEM			12 ho	ours	
Structure and function of ecosystem – terrestrial (Forest and grassland) and aquatic (freshwater, marine and estuarine) – Biological features of coral reefs, seaweeds, seagrasses and mangroves – Natural resources and their management.						
Unit IV	ENVIRONMENTAL POLLUTION AND			14 ho		
biological effects	mental pollution (Air, water, soil, marine and and control – Biological indicators and their ro in bioremediation – Environmental education ons.	le in env	vironme	ntal mon	itoring –	

Unit V	ENVIRONMENTAL CONSERVATION, DISASTER AND MANAGEMENT	16 hours				
Man and animal conflict – species extinction – Ethics and conservation – In situ conservation: wild						
	iosphere reserves, national park – Ex situ conservation: Zoo					
Aquaria and Gene	banks - Germplasm conservation and cryopreservation -Ind	ian case studies on				
conservation on c	onservation/management strategy (Project Tiger, Biosphere r	eserve) -Effects of				
climate change, gl	obal warming and its effect on living organisms: Tsunami, C	yclone Earthquake,				
flood: causes, cons	sequences, control and management.					
ReferenceBooks						
	s, 1997. Environmental Biology, Routledge, UK.					
	ur, 1997. Environmental Protection Law and Policy in Inc.	lia, Deep & Deep				
Publications, N						
➢ Verma, P.S. an	nd Agarwal, V.K. 2000.Environmental Biology (Principles of	Ecology) S. Chand				
	td., New Delhi.					
Eugene P.Odu	m and Gary W. Barrett, 2005. Fundamentals of Ecology	(5 th Edition), Cole				
Publishing Co.						
	n, Colin R. Townsend, John L. Harper, 2006. Ecology: Fr	rom Individuals to				
•	/iley Blackwell.					
	and Gaidhane, D.M. 2010. Environmental Biology, Stadium P					
-	Singh, S.P. and Gupta, S.R. 2017. Ecology, Environme	ental Science and				
	S. Chand & Company Ltd., New Delhi.					
	nik, Kaushik, C.P. 2021. Perspectives in Environmental S	tudies, New Age				
International (P) Ltd. Publishers, New Delhi.					
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352627/					
Web Source: https://www.nios.ac.in/media/documents/SrSec338new/338_Book2_New.pdf						
	https://testbook.com/learn/ecology-and-ecosystem/					
Course Outcome	es (COs):					
Course	After the Completion of the Course, the student will be	CognitiveLevel				
Outcome	able to –	CogmuveLevel				

Course Outcome	After the Completion of the Course, the student will be able to –	CognitiveLevel
CO1	Describe the interaction of living organisms with the environment, energy transfer between the trophic level and know the cycling of elements in the environment.	К2
CO2	Understand the complex dynamics and spatial patterning of populations and of entire assemblages of multiple species across diverse environment.	K1, K2
CO3	Know the types of living organisms in various each ecosystem, conservation and sustainable utilization of natural resources.	K1, K2
CO4	Know the impact of pollution in the environment and its control measures; acquire knowledge on environmental education and environmental laws.	K3, K4, K5
CO5	Understand various methods of environmental conservation, disaster and management techniques.	K, K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Н	L	L	L	L	Н	L
CO2	Н	Н	L	L	L	L	М	L
CO3	Н	L	L	L	L	L	Н	L
CO4	Н	Н	L	L	L	М	Н	L
CO5	L	L	L	L	L	L	Н	L

CORE PAPER IV: ANIMAL BIODIVERSITY

Semester	Ι
Course Type	CORE PAPER IV
Title of the Course	ANIMAL BIODIVERSITY
Course Code	NZOC14
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC14 ANIMAL BIODIVERSITY	Credits: 4	Max. Marks: 100
----------------------------	------------	-----------------

Course Prerequisites:

The student should possess basic knowledge on various components and conservation aspects of biodiversity.

CODE:		L	Т	Р	С			
NZOC14	ANIMAL BIODIVERSITY	4	-	-	4			
 Course Objectives To understand the ecosystem, diversity of organisms and their ecological relationship. Know the genetic relationship of animals, animal distribution and biological hotspot areas. Inculcate conservation strategies of ecosystem and various enactments related to conservation policy at national and international level. To know how to measure biodiversity. 								
Unit I	BIOLOGICAL DIVERSITY	BIOLOGICAL DIVERSITY 15 hours						
Species – Origin of new species, Community and ecosystem diversity, Genetic diversity, Systematics in Diversity – Environment and Genetic Variations – Biological Classification – Phylogenetic Relationship – Ecological Biodiversity –Species Concept – Biological and Phylogenic Concepts; Species Inventory – Biodiversity hot spots.								
Unit II	SPECIES DIVERSITY			15 hou				
Global distribution of species – Tropical species diversity- Diversity in terrestrial, marine and								
Global distributior		ersity in t	errestri					
fresh water – Spec	n of species – Tropical species diversity- Dive cies extinction and Endangered Species; Threat	ts to biod	liversity	al, marir v; Extinc	ne and tion –			
fresh water – Spec Past rate of extin	n of species – Tropical species diversity- Dive	ts to biod	liversity	al, marir v; Extinc	ne and tion –			
fresh water – Spec Past rate of extin conflicts.	n of species – Tropical species diversity- Dive cies extinction and Endangered Species; Threat action – Human caused extinctions – Endem	ts to biod nic specie	liversity	al, marin 7; Extinc 11 and 2	tion – nimal			
fresh water – Spec Past rate of extin	n of species – Tropical species diversity- Dive cies extinction and Endangered Species; Threat	ts to biod nic specie	liversity	al, marir v; Extinc	tion – nimal			
fresh water – Spec Past rate of extin conflicts. Unit III Definition – Basic spectrum – Types	n of species – Tropical species diversity- Dive cies extinction and Endangered Species; Threat action – Human caused extinctions – Endem	ts to biod nic specie RSITY radiation s – Princ	liversity es –Ma	al, marir v; Extinc n and a 14 hou lectroma ad compo	ne and tion – nnimal Irs gnetic onents			
fresh water – Spec Past rate of extin conflicts. Unit III Definition – Basic spectrum – Types of GIS – Applica	n of species – Tropical species diversity- Diversity extinction and Endangered Species; Threat action – Human caused extinctions – Endem REMOTE SENSING AND BIODIVER concepts of remote sensing – Electromagnetic of Remote sensing- Principles and applications	ts to biod nic specie RSITY radiation s – Princ biodivers	liversity es –Ma	al, marir v; Extinc n and a 14 hou lectroma ad compo	ne and tion – unimal urs gnetic onents n and			

Unit V	BIODIVERSITY INDICES	14 hours				
Basic Measuremen	nt methods, Computation of species richness, Biodiversity indi	ces – Univariate				
method -Shannon	n Weiner Index, Simpson Index, Similarity and Dissim	ilarity index -				
Graphical/distribut	tional techniques. Multivariate Method – Cluster analysis.					
	▶ Dadhich, L.K. and A.P. Sharma, 2002.Biodiversity	-Strategies for				
	Conservation, APH Publishing Corporation, New Delhi.					
	➢ Chaudhuri, A.B. and D.D. Sarkar, 2003. Mega diversit	y Conservation,				
	flora, Fauna and Medicinal Plants of India's hot spots	, Daya Publishing				
	House, Delhi.					
Anne Maczulak, 2009. Biodiversity: Conserving Endangered Species (G Technology). Facts on File Publishers.						
ReferenceBooks	York.					
	Zhi-Qiang Zhang (ED), 2012. Animal Biodiversity: An of	0				
	level of classification and survey of taxonomic richness, Mo	-				
	Anne E. Magurran, 2013. Measuring Biological Diversity, V	•				
	Mark F. Watson, Chris Lyal and Colin Pendry, 2015. Descr					
	The foundation of Biodiversity Research, Cambridge Univer					
	George Joseph and Jegannathan, C., 2018. Fundamentals of	Remote Sensing,				
	The Orient Blackswan Publishers.					
	https://www.ugc.ac.in/oldpdf/modelcurriculum/Chapter4.pdf	· /				
Web Source:	 https://en.wikipedia.org/wiki/Biodiversityhttps://en.wikipedia.org http://nbaindia.org/ 	g/wiki/vitamin				
	 http://www.bsienvis.nic.in/database/biodiversity-hotspots-in-indi 	a 20500 aspy				
	✓ Intp.// www.usiciivis.inc.in/ uatabase/ 01001 vci sity-110(sp0(s-in-ind)	a_20300.aspx				

Course Outcomes (COs):

Course Outcomes (COS):						
Course	After the Completion of the Course, the student will be	CognitiveLevel				
Outcome	able to –	Cognitive Level				
CO1	Understand the types of biodiversity, biological classification system, Phylogenetic relationship of organisms and Global Biodiversity hotspots.	K1, K2				
CO2	Acquire knowledge on diversity and types of organisms in various ecosystems, threats to biodiversity, rate of extinction of species and IUCN red list of species.	K1, K2, K4				
CO3	Learn about basics of concepts of remote sensing, components of GIS and its application in biodiversity conservation and management.	K1, K2				
CO4	Know about the importance, duties, functions and powers of various biodiversity regulating agencies.	K1, K2				
CO5	Analyze and measure the diversity of organisms using various computation methods.	K2, K3, K4, K5				

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	L	М	L	М	Н	L	L
CO2	Н	L	L	L	L	L	М	Н
CO3	L	L	L	L	L	Н	Н	L
CO4	L	L	L	L	L	М	Н	L
CO5	Н	L	L	L	L	М	L	L

CORE PRACTICAL I: STRUCTURE AND FUNCTION OF INVERTEBRATES & COMPARATIVE ANATOMY OF CHORDATES

Semester	I
Course Type	CORE PRACTICAL I
Title of the Course	STRUCTURE AND FUNCTION OF INVERTEBRATES &
	COMPARATIVE ANATOMY OF CHORDATES
Course Code	NZOL11
Practical Hours	72 Hours/ Semester : 4 Hours/ week

NZOL11 STRUCTURE AND FUNCTION OF INVERTEBRATES & COMPARATIVE ANATOMY OF CHORDATES	Credits: 2	Max. Marks: 100
---	------------	--------------------

Course Prerequisites:

The student should have a basic knowledge on structural and functional morphology of Invertebrates and chordates

CODE	STRUCTURE AND FUNCTION OF	L	Т	Р	С			
NZOL11	INVERTEBRATES & COMPARATIVE ANATOMY OF CHORDATES	-	-	4	2			
Course Objectives	 To explore the knowledge on basic life for significance of invertebrates. To understand the connecting links of Inver To Known the structure and function of N and reproductive system of invertebrates an Understand the salient features and structur To aware about reproductive mechanism classes of chordates and appreciate the ecor 	tebrates a lervous synd chordat al affinition and nerv	and chor ystem, o es. es proto yous sy	rdates. digestive ochordate stem of	system			
	List of Practicals							

STRUCTURE AND FUNCTION OF INVERTEBRATES

- 36 Hours

- 1. Identification and study of selected Protozoan and Helminthes of medical importance
- 2. Identification and study of larval forms of:
- 3. Trochophore larva, ii) Nauplius larva iii) Zoea larvae of Prawn and crab iv) Bipinnaria larva.
- 4. Identification and study of larval forms from all major phyla of invertebrates (Fresh water, Marine water larval forms and Insect larval forms).
- 5. Mounting of mouth parts of Honey bee, House fly and Placoid scales.
- 6. Mounting the appendages of Prawn.
- 7. Dissection of nervous system of: Prawn, any insect (cockroach), Pila.
- 8. Dissection of reproductive system of any insect: Cockroach
- 9. Mounting of a. Sting of Honey bee b. Pedicellaria of Sea urchin c. Aristotle lantern of Sea urchin

COMPARATIVE ANATOMY OF CHORDATE

- 36 Hours

- 1. Study of the following skull types with reference to jaw suspensions
- 2. a) Fish b). Frog c). Snake d) Calotes d)Rat/Rabbit
- 3. Study of the following specimens with Reference to their adaptive features for their respective modes of life:

a). Echeneis b). Ichthyophis / Uraeotphlus c) Hyla d). Draco e) Pigeon f) Bat

d). Adaptive radiation feathers e). Adaptive radiation fins in fish

f). Adaptive radiation in the beak and hind limbs of birds

- 4. Study of the salient features and structural affinities of the following specimens: Amphioxus b) Balanoglossus c) Ascidian d) Peteromyzon
- 5. Dissection:
 - A. Aortic Arches in Teleost
 - B. Reproductive system of Rat (Demonstration)

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	Cogmittellever
CO1	To learn the epidemiology of protozoans and helminthes parasites.	K1, K2
CO2	To analyze the evolutionary significance of life stages of major and minor phyla of invertebrates	K1,K2
CO3	Understand the salient features, structural affinities and evolutionary significance of various vertebrates.	K1,K2
CO4	Develop the skill on handling, mounting techniques of mouth parts of Honey bee.	K2, K3
CO5	Acquire the skill of Mounting the appendages of Prawn and know the handling techniques of dissection of nervous system and reproductive system.	K1, K2, K6

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	М	L	L	М	Н	L	L	L
CO2	М	L	L	М	М	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	L	L	L	Μ	Μ	L	L	М
CO5	L	L	Н	Μ	L	L	L	М

CORE PRACTICAL – II - ENVIRONMENTAL BIOLOGY AND ANIMAL BIODIVERSITY

Semester	I
Course Type	CORE PRACTICAL II
Title of the Course	ENVIRONMENTAL BIOLOGY AND ANIMAL
	BIODIVERSITY
Course Code	NZOL12
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

N701 13	ENVIRONMENTAL BIOLOGY	Credits: 2	Max Marka 100	
NZOL12	AND ANIMAL BIODIVERSITY	Creans: 2	Max. Marks: 100	

Course Prerequisites:

Basic knowledge on Environmental Biology and Animal Biodiversity

CODE:	ENVIRONMENTAL BIOLOGY &	L	Т	Р	С		
NZOL12	ANIMAL BIODIVERSITY	0	-	4	2		
Course Objectives	 To impart knowledge on primary production To assess various water quality parameter To identify plankton and measure its diverties To preserve the collected faunal samples. 	s.	i ecosyst	em			
	List of Practical						
	ANIMAL BIODIVERSITY		-36 Ho	ours			
1. Measure	ment of Aquatic Primary Productivity by Light a	nd Dark b	ottle.				
2. Estimati	on of Dissolved oxygen						
3. Collectio	on, Isolation and identification of planktons.						
4. Diversity	of Phytoplankton						
5. Diversity	of Zooplankton.						
6. Fish co Distribut	mmunity study: Species Identification – Division.	ersity –	Density	y – Ab	undance		
•	f museum specimens / lab specimens – Invert tems with brief description – Diagrams necessary		and verte	ebrates	List the		
	ENVIRONMENTAL BIOLOGY		36 Hour	S			
1. Estimati	on of salinity						
2. Estimati	on of Nitrate						
3. Estimati	on of Phosphate						
4. Estimati							
5. Analysis	of Industrial effluent – TDS, TSS, BOD.						

- 6. Field Visit to
 - i. Drinking water treatment plant
 - ii. Sewage treatment plant.

Course Outcomes (COs):

Course Outcome		
Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	CogintiveLevel
C01	Acquire knowledge on primary productivity in an aquatic ecosystem.	K1, K2
CO2	Develop skill to analyze physico-chemical parameters of water.	K2, K4, K5
CO3	Measure and assess the diversity, density and richness of the species through biodiversity index.	K2
CO4	Understand various steps to remove contaminants from the waste water.	K1, K2
CO5	Know the process of preserving fauna using various methods.	K1, K2,

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	L	L	L	L	L	Н	L
CO2	L	L	L	L	L	L	Н	L
CO3	L	L	L	L	L	М	Н	L
CO4	L	L	L	L	L	L	Н	L
CO5	L	L	L	L	L	L	Н	L

ELECTIVE I: ANIMAL CELL BIOTECHNOLOGY (E- PATHSALA-1)

Semester	Ι
Course Type	ELECTIVE I (E- PATHSALA-1)
Title of the Course	ANIMAL CELL BIOTECHNOLOGY
Course Code	NZOEPA
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

NZOEPA	ANIMAL CELL	Credits: 3	Max Markey 100	
NZUEPA	BIOTECHNOLOGY	Creans: 5	Max. Marks: 100	

Course Prerequisites:

The student should have a basic knowledge on genes, genetic engineering, microbiological aseptic practices.

CODE:	ANIMAL OF L DIOTECHNOLOGY	L	Т	Р	С	
NZOEPA	ANIMAL CELL BIOTECHNOLOGY	3	-	-	3	
Course Objectives	 To give understanding on cell culture, requirements for animal cell laboratory To teach the concepts of tissue culture, organ culture tissue engineering its ethics and applications Tools used in genetic engineering, transgenic animal an their applications Concepts and applications of genetic engineering RNA interference (RNAi), Antisense oligodeoxynucleotide Technology, ene knock out/ gene targeting; generation of transgenic animals Assisted reproductive technology, animal conservation, Good laboratory practices. 					
Unit I	INTRODUCTION & SCOPE OF ANIMAL CELL CULTURE 8 hours					
Introduction and I	History of Cell Culture, types of cell culture,	Laborate	ory Re	quiremen	ts for	
Animal Cell Cultu	re in animal cell biotechnology, Media & l	Reagents	Used	d in A	nimal	
Cell Biotechnolog	y, Instruments and analytical techniques; Sec	condary C	Cell Cu	ulture and	l Cell	
Lines and Applicat	tion of Animal Cell Culture.		<u> </u>			
Unit II	BASICS OF ANIMAL CELL CULT	URE		10 hou	irs	
The basic concept of tissue culture , Organ culture & applications, Different organ culture methods, Applications of organ culture; The basic concept of tissue engineering; Materials required for tissue engineering & their selection criteria; Applications of tissue engineering in generation of various organs; Ethical implication of tissue engineering.						
Unit III	CELL BIOTECHNOLOGY			14 hou	II'S	

Modifying enzymes, different classes of modifying enzymes and their uses in animal cell biotechnology/ genetic engineering- Basic concept of transgenic animals, method of transgenic animal creation, ethical, social and legal concern related to transgenic animals, applications of transgenic animals in medicine, agriculture and industrials- Methods for construction of recombinant animal viral vectors for gene transfer into cell lines; structure of different animal viral vectors. application and future perspective of animal viral vectors

Unit IV	CONCEPTS OF GENETIC ENGINEERING	12 hours
Concept of Gener	tic Engineering, Methods in genetic engineering, Applicati	ons of Genetic
Engineering, Futu	are prospects of Genetic Engineering- Gene Expression	in Eukaryotes
Techniques in ma	anipulation of gene expression in eukaryotes, RNA interfe	erence (RNAi),
Antisense oligode	oxynucleotide Technology, Designed transcription factor-	Collection and
Purification Proces	ss of Recombinant Proteins- gene knock out/ gene targeting	; generation of
transgenic mouse,	Applications of the gene knock out/ targeting.	

Unit V	ASSISTED RE	PRODUCTIVE 7	rechnol	OGIES	10 ho	ours	
Sperm and Embryo sexing and disease transmission; Pregnancy Diagnosis in Animals; Stem Cell							
Technology and T	Therapeutics; Cell C	Cryopreservation a	and Animal	l Conserva	ation; Anim	al cell	
culture, Tissue	culture, Biosafety	level, Different	level	of B	io-safety,	Good	
Laboratory Practic	e Ethical Issues rela	ted to the Animal	Cell				

ReferenceBooks

- Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K and J.D. Watson. 1994. Molecular Biology of the Cell. (3rd Edn.), Garland Publishing Inc., New York.
- Ed. John R.W. 2000. Masters, Animal Cell Culture Practical Approach, 3rd Edition, Oxford University Press.
- Griffth, A.J.F., Wessler, S. and R. Carroll. 2000. An Introduction to Genetic Analysis (7th Edn.)., W.H. Freeman & Co.
- Srinivastava, A. K., Singh, R. K. and M. P. Yadav. 2005. Animal Biotechnology, Oxford and IBH Publishing Co. CFA Bryce Pvt. Ltd.
- Yadav, P.R. and R. Tyagi. 2006. Biotechnology of Animal Tissue. Discovery Publishing House, New Delhi.
- Ramadass, P. 2008. Animal Biotechnology: Recent Concepts and Developments. MJP Publishers, India.
- Ian Freshney, R. 2010. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, John Wiley and Sons

Web Source:> https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=t5vt4STquHI OBMr5g==
--

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	Cognitive Level
Outcome	able to –	CognitiveLevel
CO1	Know the history of animal cell culture, laboratory requirements, equipments and media requirements for animal cell culture and applications of animal cell culture technique.	K1, K2, K3
CO2	Understand the basic concept of tissue culture, organ culture, tissue engineering, application of tissue engineering in organ generation and ethical implication in tissue engineering.	K2,K4,K5
CO3	Types modifying enzymes their uses in animal cell biotechnology. concept of transgenic animals, ethical, social and legal concern related to transgenic animals, applications of transgenic animals, Construction of recombinant animal viral vectors, different animal viral vectors. application of animal viral vectors	K1,K2,K3,K6
CO4	Concept & Methods of Genetic Engineering, manipulation of gene expression in eukaryotes, generation of transgenic animals; RNA interference (RNAi), Antisense oligodeoxynucleotide Technology - gene knock out/ gene targeting, Applications of the gene knock out/ targeting.	K1, K2, K3
CO5	Pregnancy Diagnosis in Animals; Sperm and Embryo sexing; Stem Cell Technology and Therapeutics; Cell Cryopreservation and Animal Conservation; GLP Ethical Issues related to the Animal Cell culture.	K2, K3,K4

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	М	Н	М	L	L	L	L
CO2	Μ	Н	Н	L	L	L	L	L
CO3	М	Н	Н	Н	L	L	L	L
CO4	М	Н	Н	Н	L	L	L	L
CO5	Μ	Н	Н	М	L	L	L	L

ELECTIVE I: 1. ENTREPRENEURIAL MUSHROOM CULTIVATION

Semester	Ι
Course Type	ELECTIVE I
Title of the Course	ENTREPRENEURIAL MUSHROOM CULTIVATION
Course Code	NZOEA
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

NZOEA	ENTREPRENEURIAL	Credits: 3	Max. Marks: 100
NLOLA	MUSHROOM CULTIVATION	Cicuits. 5	

Course Prerequisites:

Have basic knowledge of the aseptic handling in microbiology and entrepreneurial interest

CODE:	ENTREPRENEURIAL MUSHROOM	L	Т	Р	С				
NZOEA	CULTIVATION	3	-	-	3				
	\succ To teach the types of mushroom, life cycle		va mad	icinal v	-				
	mushroom in	, nutritr	ve, med	icinal v	alue of				
	 To teach the infrastructural requirements for mushroom culture 								
Course	 To make understand the edible and medicinal mushroom production 								
Objectives	\succ To teach the Disease management and		1		ing in				
Objectives	mushroom cultivation	1050 1	iui vest	process	ing in				
	 To teach the various value added products fr 	om Mus	hroom						
	MORPHOLOGY AND IMPORTANC								
Unit I	MUSHROOM			10 ho	urs				
Introduction to N	Mushroom –Role in nature and society, Basic	structure	e and n	norpholo	gy of				
	ive value of mushroom, Medicinal mushroom-								
	e, Non-edibe and poisonous), Life cycle of mu			•	-				
mushroom									
TL '4 TT	INFRASTRUCTURE, SKILL AND REQU	IREME	NTS	10.1					
Unit II	FOR ARTIFICIAL CULTURE OF MUS			10 ho	urs				
farm, -Spawn Un	it, Production Unit, Cropping Unit and post-har	vest han	dling u	nit, Mac	hinery,				
Equipments and	instruments in mushroom production and p	processir	ıg, Far	m Desi	gn for				
mushroom produc	tion unit -Layout and construction materials	, Labora	itory	requirem	ents –				
Instruments and e	equipments, Pure culture of mushroom and its	preserva	ation te	chniques	s, Raw				
materials, Formul	ation and Sterilization								
Unit III	COMMERCIAL PRODUCTION OF E		-	12 ho	urs				
	MUSHROOM AND MEDICINAL MUSH								
	sing and culture practice of White button m								
	alation of substrate preparation and crop man								
	<i>tus</i>), Traditional and modern cultivation t		-						
	variella volvacea), Cultivation of milky m			•					
	logy of the medicinal mushrooms: Lentinus edo		,						
<i>lucidum</i> (Reish		shroom)	and	i Cor	dyceps				
<i>militaris</i> (Entomop	bathogenic fungus)								
	30								

Unit IV	POST HARVEST TECHNOLOGY OF MUSHROOM	10 hours				
C	AND DISEASE MANAGEMENT					
ē	for mushroom yield enhancement, Quality traits and consum	1				
	ling of fresh mushrooms, Recycling of spent mushroom					
	bom and their managements-bacterial, fungal and moulds and	fungal diseases,				
Pest mushroom ma	anagement (Insect and nematode)	[
Unit V	VALUE ADDED PRODUCTS AND MUSHROOM MARKETING	12 hours				
Ingredients and pro	eparation of Mushroom soup powder, mushroom nuggets, Mus	shroom ketch-up,				
Mushroom candy,	mushroom pickle and mushroom preserve (murabba), mushro	om Chips, Art of				
mushroom cooking	g : Mushroom tomato soup, mushroom onion soup, mushroom	m pakoda ,kadai				
mushroom, mushr	oom curry, mushroom tomato sauce, mushroom cabbage salac	l,mushroom dum				
biryani, Marketing	of mushroom :Global and domestic, Entrepreneurial capital,	SWOT analysis				
	me work, Government Schemes	2				
ReferenceBooks						
Marimuthu,	T. et al. 1991. Oster Mushroom. Department of Plant Patho	logy. Tamil Nadu				
	University, Coimbatore.	- 85				
U	2000. Handbook on Mushrooms. 2nd ed. Vol. I and II.	Oxford and IBH				
-	o. Pvt. Ltd., New Delhi					
	, S. K Ghosh, 1996. A Hand Book on Mushroom Cu	ultivation Emkey				
Publications.		j				
	N. and Yadav, N. 1998. Mushroom Production and Proces	sing Technology				
Agrobios, Jo		ising reeniorogy.				
0	aj Kapoor, S. C., 1988. Mushroom Cultivation. Mittal Publicat	ion New Delhi				
	2., 2005. Mushroom Cultivation, Oxford & IBH Publishing Co					
Delhi.	., 2005. Mushiooni Cultivation, Oxford & Ibir Fuonshing Co). I v I.LID, New				
	., Nagendra Yadav and Maneesha Gaur, 2000. Mushroon	n Production and				
Processing Technology/ Vedams Ebooks Pvt Ltd., New Delhi.						
	https://en.wikipedia.org/wiki/Mushroom					
Web Source:	https://en.wikipedia.org/wiki/Edible_mushroom					
Course Outcome	es (COs):					
Course	After the Completion of the Course, the student will be	CognitiveLevel				
Outcome	able to –	CognitiveLevel				

Course Outcon		
Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	CogintiveLevel
CO1	Will understand the structure and morphology of mushroom, Nutritive value of mushroom, Pharmaceutical value Types of mushroom -Life cycle of mushroom	K1, K2
CO2	Will know the different units in Mushroom cultivation- Machinery, Equipments and instruments in mushroom production, Farm Design for mushroom production- Pure culture of mushroom and its preservation techniques, Raw materials and Sterilization	K1,K2
CO3	Will understand the pawning and casing and culture practice-Ingredients, formulation of substrate preparation and crop management of oyster mushroom, Traditional and modern cultivation technologies of paddy straw	K1,K2

	mushrooms.	
CO4	Will understand the Growth regulators for mushroom yield enhancement, Post-harvest handling of fresh mushrooms, Recycling of spent mushroom waste, Microbial diseases of mushroom and their management.	K1, K2
CO5	Will understand the Value added products preparation of Mushroom, Marketing of mushroom :Global and domestic, Entrepreneurial capital, SWOT analysis, Licenses legal frame work, Government Schemes	K1,K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Μ	L	М	L	L	L	L
CO2	М	Н	L	L	L	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	Н	Н	L	L	L	L	L	L
CO5	М	Н	L	L	L	L	L	L

ELECTIVE I: 2. APICULTURE

Ι	
ELECTIVE I	
APICULTURE	
NZOEB	
54 Hours/ Semester : 3 Hours/ week	
	APICULTURE NZOEB

NZOEBAPICULTURECredits: 3Max. Marks: 100
--

Course Prerequisites:

Inclination for taking up Bee Keeping as a self employment activity

CODE:		L	Т	Р	С		
NZOEB	APICULTURE	3	-	-	3		
▶ Will gain the knowledge of different species and races of honey bees ▶ Will be able to identify flora and location of sites for Bee hives ▶ Understand the requirement of different bee species and preparing flowering calendar. ▶ Understand the using Bee boxes including cleaning of Boxes and various tools and equipment used in Bee keeping ▶ Understand the importance of health and hygiene in Bee keeping ▶ Understand the importance - History of bee keeping: Definition, Bee keeping in worldwide, In India. Traditional bee keeping, Modern beekeeping, Urban or backyard beekeeping- Apiculture development in India - institutions involved. Role of Central Honey Bee							
Research & Trainin	-				y Dee		
Unit II	LIFE CYCLE OF HONEY BEF	C		10 hou	irs		
Honey Bee morphology, Anatomy and Life cycle - Basic concepts of morphology of Honey bees - indigenous, exotic-Honey bee species and identification. Origin, systematic and distribution of honey bees. Types of honey bees, Species of honey bees. Bee identification-Social organization in honey bees: Colony life and social organization – Queen, drone, worker. Annual biological cycle							
of the bee colony. Unit III	PESTS AND DISEASES MANAGEN	(ENT		12hou	rs		
Honeybee Enemies Moth, Ants, Wasps, bees: Varroa mites, stocks, Biopesticid protozoan diseases: Deformed Wing Vi Paralysis Virus; Fu <i>Nosema cerana</i> .	and Diseases-Bee enemies and diseases: An int Microorganisms, Pests. Diagnosis and Identifi Mite Biology, Controlling Varroa Mites, Me es, Chemical (synthetic pesticide) treatments Bacterial disease - American Foulbrood, Europ rus, Sacbrood Virus, Black Queen Cell Virus, ungal disease - Chalkbrood, Stonebrood; Pr	roduction cation chanical Bacte cean Foul Kashmir	Mites a control erial, v lbrood, Bee Vi	enemies – ttacking 1 , Mite-to iral, fung Viral dis rus, Acut - <i>Nosen</i>	- Wax honey lerant gal & ease - e Bee <i>nosis</i> ,		
UnitIV	PROPERTIES OF HONEY			12hou	rs		

Honey - its properties and application in various fields- Honey - its medicinal properties - application in various fields - other valuable by products of honey bees-Value added honey products. Properties of honey products, Nutrients and composition of honey, Acid content and flavor effects.-Types of value added honey product

Unit V	HC	DNEY	PROCESSING AND ECONOMICS	12hours
Honey Processing	and Bee	Hive	Products-Honey extraction & handling -	Quality control
standards - Honey	testing kit	-Proc	essing of honey. Other valuable by products	of honey bees-
Bee venom & Roy	al jelly ext	raction	n. Economics of bee keeping: Economics in	small scale and
large scale bee kee	ping. Econ	omic	Value of Commercial Beekeeping Preparir	ng bankable bee
keeping project: St	eps involve	d in s	tarting a beekeeping project, Funding sources	for beekeeping
projects.	-			r c

Reference Books

- ▶ Prost, P. J. 1962. Apiculture. Oxford and IBH, New Delhi.
- ▶ Bisht D.S.,2000 Apiculture, ICAR Publication.
- Singh S., 2002. Beekeeping in India, Indian council of Agricultural Research, New Delhi.
- Delaplane, K.S. 2006. Honey Bees and Beekeeping: A Year in the Life of an Apiary, 3rd Edition.
- Ross, C., 2007. The Georgia Center for Continuing Education, Athens, USA. Natural Beekeeping : Organic Approaches to Modern Apiculture, White River Junction, London, UK.
- Dadant C.P., Dadant C.C., Dadant M.G., Dadant J.C. (eds.) 2011. The Hive and The Honeybee. Dadant and Sons, Inc. Hamilton, USA. Sammataro D., Avitabile A. The Beekeeper's Handbook, 4th edition. Cornell University Press, USA.

Web Source:	https://onlinecourses.swayam2.ac.in/nos19_as10/preview
	http://ecoursesonline.iasri.res.in/course/view.php?id=166

Course	After the Completion of the Course, the student will be	Cognitive
Outcome	able to-	Level
CO1	Analyze major trends in a given economic sector / sub- sector and identify Business Opportunities	K1, K2
CO2	Develop effective personal management skills like time management and communication skills.	K1,K2
CO3	Devise a simple marketing and sales strategies and plan for a small business	K1,K2
CO4	Knowledge on the processing of honey and byproducts of honey.	K1, K2
CO5	Work out Business plan and economics of the project	K1,K2

Course Outcomes (COs):

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Μ	L	М	L	L	L	L
CO2	М	Н	L	L	L	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	Н	Н	L	L	L	L	L	L
CO5	М	Н	L	L	L	L	L	L

ELECTIVE I: 3. SEAWEED CULTURE AND ITS BIOPROSPECTING

Semester		Ι					
Course Type		ELECTIVE I					
Title of the Course SEAWEED CULTURE AND ITS BIOPROSPECTING							
Course Code	Course Code NZOEC						
Teaching Hours54 Hours/ Semester :			rs/ week				
CODE:	SEAW	TEED CULTURE AND ITS	Credits: 3	Max. Marks: 100			
NZOEC	NZOEC BIOPROSPECTING		Crealls: 5	IVIAX. IVIATKS: 100			

Course Prerequisites:

The student should know about basics of phycology.

CODE:	SEAWEED CULTURE AND ITS	Т	Р	С		
NZOEC	BIOPROSPECTING	3	-	-	3	
Course Objectives	 Acquire knowledge on the importance and cultivation aspects of commercially important seaweeds. To know the nutraceutical and pharmaceutical potential of seaweeds. To learn the immunemodulatory property of seaweed derived products against aquaculture pathogens. 					
Unit I	BIOLOGY OF SEAWEEDS 10 hours					

Classification (Green, Brown and Red seaweed) – Life cycle – General characteristics – Occurrence and distribution of seaweed – Indian and Global production status - Unique features of seaweeds.

Unit II	Unit II SEAWEED CULTIVATION						
cultivation (Mono)	Seaweed cultivation potential in India – Seaweeds of cultivation importance – Types of seawee cultivation (Monoline, Floating raft, Polythene Bag, Long line, Vertical line, Hanging line, Per Cage and sack bag culture) – Factors influencing the growth of seaweeds -Challenges in seawee harvesting.						
Unit III	NUTRACEUTICALS FROM SEAWEEDS	10 hours					
(Carageenan, Algi	ortance of seaweeds: Minerals and Vitamins – Proteins nate, Agar), Lipids, Pigments, Phenolic compounds. Seaweed , Irish moss, Kombu, Wakame – Utilization of seaweed as fish	ds as Human food:					
Unit IV	PHARMACEUTICALS FROM SEAWEEDS	11 hours					
Pharmacological activities of bioactive compounds derived from seaweeds – Antimicrobial antioxidant, anticoagulant, anticancer, antiviral, anti-allergic, anti-inflammatory, antidiabetic, antigenotoxic activity – Treatment of Alzhemier disease and osteoporosis.							
Unit V	SEAWEED POLYSACCHARIDES FOR AQUATIC DISEASE MANAGEMENT	12 hours					

Methods of extraction and characterization of polysaccharides (Fucoidan, Alginic acid, Carageenan) from seaweeds. Administration of polysaccharides in aquafeed for commercially important shellfish and finfish – Evaluation of growth performance – Immune response and diseases resistance.

ReferenceBooks

- Christopher S. Lobban and Paul J. Harrison, 1994. Seaweed Ecology and Physiology, Cambridge University Press.
- Vitor H. Pomin, 2004. Seaweed: Ecology, Nutrient Composition and Medicinal uses. Hauppauge Publishers, New York.
- Christian Wiencke and Kai Bischof, 2012. Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization, Springer.
- Herminia Dominguez, 2013. Functional Ingredients from Algae for Foods and Nutraceuticals, Woodhead Publishing Ltd.
- Degmar B. Stengel and Solene Connan, 2015. Natural products from marine algae, Humana Press.
- Joel Fleurence and Ira Levene, 2016. Seaweed in Health and Disease Prevention, Academic Press.
- Venkatesan, J., Anil, S. and Se-Kwon Kim, 2017. Seaweed Polysaccharides Isolation, Biological and Biomedical Applications, Elsevier
- Luigi Salvay, 2018. Marine Algal Bioactives, Scitus Academics, USA.

Web Source:	https://www.fao.org/3/y4765e/y4765e04.htm#bm04.2 https://www.seaweed.ie/descriptions/
Web Source:	https://www.seaweed.ie/descriptions/

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	Cognitive	
Outcome	able to –	Level	
CO1	CO1 Understand the classification, biology and global status of seaweeds.		
CO2	Acquire knowledge on various methods of cultivating commercially important seaweeds.	К3	
CO3	Learn about the nutraceutical potentials of seaweed derived compounds.	K1, K2	
CO4	Know about the pharmacological activity of active principles obtained from seaweeds.	K1, K2	
CO5	Know the methods of extraction, characterization of polysaccharides from seaweeds and their immunomodulatory property in finfish and shell fish culture.	K4	

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	L	L	М	L	М	L
CO2	М	L	L	L	L	L	L	L
CO3	L	L	L	L	Н	L	L	Н
CO4	L	L	L	Н	Н	L	L	Н
CO5	L	L	L	L	Н	М	L	М

ELECTIVE I: 4. AQUACULTURE

Semester	I
Course Type	ELECTIVE I
Title of the Course	AQUACULTURE
Course Code	NZOED
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

CODE:	AQUACULTURE	Credits: 3	Max. Marks: 100
NZOED	AQUACULIURE	Creans: 5	Max. Marks: 100

Course Prerequisites:

The student should have a basic knowledge on importance of aquaculture and culture techniques

CODE:				Р	С			
NZOED	AQUACULTURE	3	-	-	3			
Course Objectives	\searrow To acquire knowledge on the cultivation aspects of live feed culture and tish							
Unit I	BASICS AND SCOPE OF AQUACULT	TURE		8 h	ours			
Scope and import	ance of Aquaculture- Introduction to fin fish a	nd shell	fish a	quacultur	e-types of			
aquaculture-Globa	al and Indian scenario. Major cultured species,	systema	atic and	d biology	(age and			
growth), breeding	and reproduction. Biology and physiology of Ind	ian majo	or carp	s.				
Unit II	HATCHERY AND AQUA FARM ENGIN	EERIN	G	12 h	ours			
Types of hatcher	y, design, construction and maintenance-Brood	stock s	election	n and ma	intenance,			
maturation –larva	al stages-larval rearing- Post larvae manageme	ent-larva	al feed	(Artimia	a, Rotifer,			
-	roalgae) water quality management in hatchery.				••••			
and construction of	f aqua farms-Integrated fish farming- Modern appro	ach of c	omposi	te fish cul	ture.			
Unit III	AQUACULTURE NUTRITION				ours			
-	atrition; nutritional requirements of cultivable				•			
ř ř	s, vitamins, minerals and their importance. Live							
-	are of spirulina, Rotifers, Artemia, Daphnia and			-	pes - feed			
ingredients and fe	ed formulation. Probiotics, prebiotics and their us	e in aqu	acultur	re.				
Unit IV	AQUACULTURE DISEASE MANAGE				ours			
-	netic approach to modern aquaculture-fish gene							
-	AS and biofloc technology-Aquamimicry- fish a		-		-			
-	hybridization-Role of ovaprim, Ovatide in ind	uced b	reeding	g - Zoea	syndrome,			
disease manageme	ent and -uses of probiotics in hatchery.							

Unit V	NEW TECHNIQUES AND BIOSECURITY	12 hours
Role of PCR in	health assessment (hatchery and farm)- Genetic engineer	ring (Monosex and
ploidy)-SOP- HA	ACCP- Development of new techniques for aquaculture	- Cryopreservation
techniques for spe	rms- Application of remote sensing in conservation and manag	gement of fish faunal
diversity- vaccines	for aquaculture- Biosecurity measures in Aquaculture.	
Reference Books		
Michael, B.N.	and Singholka, B. 1985. Freshwater Prawn Farming. A n	nanual of culture of
Macrobrachiu	m rosenbergii. Daya Publishing House, New Delhi.	
Sinha, V.R.P.	. 1993. A Compendium of Aquaculture Technologies	for Developing
Countries. Ce	nter for Science and Technology and Oxford and IBH Pu	ublishing Co., Pvt.,
Ltd., New Del	hi.	
➢ Pillai, TVR.	and M. N. Kutty., 2005. Aquaculture: Principles and	Practices, Wiley-
Blackwell.		
Robert R. Stic	kney, 2009. Aquaculture: An Introductory Text, CAB Interr	national Publishers.
Dunham, A. R.	ex. 2011. Aquaculture and Fisheries Biotechnology, 2 nd Edition	n, CAB International
Publishers.		
Neha Charan, 2	2012. Fresh Water Fish Culture and Training, Random Publicat	tions.
Pillay, T.V.R.,	2013. Aquaculture and the Environment, Wiley Blackwell.	
► Lucas, J.S. and	Southgate, P.C. 2012. Aquaculture, 2 nd Edition, Wiley-Blackw	vell
Chandrasekhar	Y.S, 2013. Fish Nutrition in Aquaculture, Swastik Publication	18.
Web Source:	 https://www.openlearning.com/courses/aquaculture-sta247 https://www.udemy.com/course/becoming-aquaculture-exp 1/?utm_source=adwords&utm_medium=udemyads&utm_content=deal4584&utm_term=a ad_533094112755kwde_cdmplti_dsa- 1212271230479li_9040209pd&matchtype=&gc BhCOARIsAGVHQc7pVvUHaiHOBJKUcapOtNXSj83fY eEVo64rqd1a4aAqs9EALw_wcB https://www.udemy.com/topic/aquaculture/ 	pert-part- campaign=LongTail_ ag_118445032537 lid=Cj0KCQjw1N2T

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	Cognitive
Outcome	able to –	Level
CO1	Know the scope and importance of Aquaculture and structure of fin fish and shell fish, understand the types of aquaculture-Global and Indian scenario. Major cultured species, systematic and biology breeding and reproduction.	K1, K2
CO2	Understand the different types of hatchery - Design, construction and maintenance larval stages-larval rearing- Post larvae management. Know the larval feed and water quality management in hatchery. Designing, layout and construction of aqua farms.	K1,K2
CO3	Know the importance of nutrition, nutritional requirements of cultivable fin, shell fish. Understand the culture aspects Preparation and formulation of artificial feed – Utilization of probiotics in aquaculture.	K1,K2
CO4	Be acquainted with physiology of hormone and genetic approach to modern aquaculture and fish genetics- understand the fertilization and seed selection and stocking. Improve RAS and Biofloc technology.	K1, K2
CO5	Know the importance of PCR in health assessment - Development of new techniques for aquaculture cryopreservation techniques for sperms- Application of remote sensing in conservation of management of fish faunal diversity.	K1, K2, K4,K5

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	М	L	L	М	L	L	L	Н
CO2	L	L	L	L	L	L	L	Н
CO3	L	L	L	L	L	L	L	Н
CO4	L	L	L	М	L	L	L	Н
CO5	L	L	L	L	L	L	L	Н

CORE PAPER V: BIOCHEMISTRY

Semester	П	
Course Type	CORE PAPER V	
Title of the Course	BIOCHEMISTRY	
Course Code	NZOC21	
Teaching Hours	72 Hours/ Semester : 4 Hours/ week	

NZOC21	BIOCHEMISTRY	Credits: 4	Max. Marks: 100

Course Prerequisites:

The student should have basic knowledge on principles, concepts of biochemistry and structure of biomolecules.

CODE:		L	Т	Р	С
NZOC21	BIOCHEMISTRY	4	-	-	4
Course Objectives	 To explore the chemistry of living organist the changes occurring in living cells. To understand the metabolism of biomolec To diagnose and manage disease through other body fluids. 	ules.		lood, uri	ne and
Unit I	CARBOHYDRATE			14 ho	urs
	ucture, properties and functions – Metabolism ycogenolysis – Glycogenesis – Gluconeogene prylation.				
Unit II	PROTEINS AND ENZYMES			15 ho	urs
(Ramachandran pl of Bonds (Vander – Enzymes : Typ	are – Classification and properties of amino ot, Primary, secondary, Tertiary, Quartenary, D waals, electrostatic, hydrogen and hydrophilic b bes, classification and properties of enzymes anism of Enzyme catalysis – Isoenzymes - Coe etabolism.	omain, N oonds) – 1 – Enzyr	Iotif & Biologi ne kine	Folds) – cal signi etics - E	Types ficance Enzyme
Unit III	LIPIDS			14 ho	urs
	tructure, properties and biological functions or es, Triacylglycerol, cholesterol, Phospholipids, tion of fatty acids.	-	•		•
Unit IV	NUCLEIC ACIDS			14 ho	urs
	ic acids – helix (A,B,Z), tRNA and microRNA dines (Denovo and salvage pathways) – Vitami mins.	•		0	

Structure, classification, hormones and their receptors – Steroid hormone receptor, peptide hormone receptor, signalling through G-protein coupled receptors – Signal transduction pathway, cAMP, cGMP, phospatidyl, inositol and calcium as secondary messenger – Hormonal regulation and signal transduction.

ReferenceBooks

- > Frunton J.S. Simmonds, S. General, G. And Dol, R.H. 1987. Outlines of Biochemistry, John Wiley & Sons.
- > Dubey, R.C. 1989. Biochemistry, MacMillan Publishing company. NY.
- ▶ Jain, J.L., Jain, S. and Jain, N., 2000. Fundamentals of Biochemistry, S. Chand & Company.
- ▶ RastoBiogi, S.C., 2003. Biochemistry (2nd Edition), Tata McGraw Hill Publishing Company Ltd.
- ▶ Voet, D. and Voet, J.G., 2004. Biochemistry, John Wiley & Sons, USA.
- > David L. Nelson and Michael M. Cox., 2004. Lehninger Principles of Biochemistry, W.H. Freeman & Company, USA.
- > Garrett, R.H. and Grisham, C.M., 2016. Biochemistry Cengage Learning Inc, USA.
- Satyanarayana, U. and Chakrapani, U., 2022. Biochemistry (6th Edition), Elsevier India.

5 5	
Web Source:	 https://bio.libretexts.org/Bookshelves/Biochemistry/Supplemental_Module s_(Biochemistry)/6Lab_Notes_Part_2/6.2%3A_Enzyme_kinetics https://opentextbc.ca/biology/chapter/18-1-types-of- hormones/#:~:text=There%20are%20three%20basic%20types,such%20as %20estradiol%20and%20testosterone. https://en.wikipedia.org/wiki/Vitamin https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemist ry_Free_For_All_(Ahern_Rajagopal_and_Tan)/02%3A_Structure_and_Fu nction/2.08%3A_Structure_and_FunctionLipids_and_Membranes

Course Outcomes (COs):						
Course	After the Completion of the Course, the student will be	CognitiveLevel				
Outcome	able to –	0				
CO1	Understand the structure, function and metabolic pathways of carbohydrates	K1, K2				
CO2	Learn the classification, structural organization of proteins, types of bonds involved in protein stabilization and to understand types of enzymes, mechanism of enzyme action, regulation and inhibition.	K2, K4, K5				
CO3	Acquire knowledge on the basic lipid biochemistry and further to understand the properties, biological functions and important disorders of lipid metabolism.	K2				
CO4	Know the structure of nucleic acids, various forms of DNA, RNA and understand the structure and metabolism of vitamins.	K1, K2				
CO5	Learn about the structure of endocrine glands, different types of hormones, receptors and its role in signal transduction.	K1, K2,				

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	Н	М	L	L	L	L	L
CO2	L	Н	L	Н	М	Н	L	L
CO3	L	Н	L	L	L	L	L	L
CO4	Н	L	М	L	L	М	L	L
CO5	L	Μ	Н	М	L	L	L	L

CORE PAPER VI: CELL AND MOLECULAR BIOLOGY

Semester	П
Course Type	CORE PAPER VI
Title of the Course	CELL AND MOLECULAR BIOLOGY
Course Code	NZOC22
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC22	CELL AND MOLECULAR	Credits: 4	Max. Marks: 100	
	BIOLOGY	Creans: 4	Max. Marks: 100	

Course Prerequisites:

The student should know the basic structure and function of cells, tissues and organs of an animal.

CODE:		L	Т	Р	С			
NZOC22	CELL AND MOLECULAR BIOLOGY	4	-	-	4			
Course Objectives	 To understand the cell and its function, transportation of molecules in and out of the cell. To equip knowledge on the biological significance of cell cytoskeleton and other cellular process. To learn the mechanism of cell signaling pathway, cell division and cell death process. To understand the structure and function of gene, gene expression and mechanism of gene regulation. 							
Unit I	BIOMEMBRANE			14 ho	ours			
ATPase-Secondary	anes –Membrane Transport- Types of Transpor y Active Transport Co-transport by sympt Iembrane Potential.			-	-			
Unit II	CYTOSKELETON			14 ho	urs			
dynamics-Motor	Introduction-Microfilaments, microtubules and Intermediate Filaments-structure, Assembly and dynamics-Motor Proteins-Actin Motors-Microtubular motors-Disease associated with motor protein defects–Biochemical composition of cytoskeletons-Functions of cytoskeleton-Role of cytoskeleton on Mitosis							
Unit III	CELL- CELL SIGNALLING			15 ho				
Signalling Mechanism-Types of cell signalling: Endocrine-autocrine-Paracrine and Juxtacrine signalling-Signal Molecules- Forms of Intercellular signalling- Cell surface receptors- G-Protein coupled receptors. Signal transduction pathways: Second messengers, Lactoferrin. MAP Kinase Pathway- Regulation of signalling pathways. Cellular communication: Principle, Cell adhesion, Gap junctions, Cell matrix adhesion- APSOptosis-Biology of Ageing.								
Unit IV	GENOME ORGANIZATION			14 ho	urs			

Chromosomal organization of coding and non-coding DNA – Chromosome types, structure -Regulation of gene expression - Morphological and functional elements of eukaryotic chromosomes– Organelle Genome: Genome in Mitochondria-genetic code of Mitochondria-TransPSOson elements

Unit V	PROTEIN CHARACTERIZATION AND SEQUENCE DETERMINATION	15 hours				
Proteomics- Protein Structure-Sequencing strategy- Protein Identification and Sequence analys by Mass Spectrometry-MALDI. Protein Structure determination in Higher order Instrumentation for Three-dimensional Protein Structure-Determination of secondary and Tertian structures of Protein						
ReferenceBooks	 Darnell, H. Lodish and D. Baltimore, 1986. Molecu Scientific American Book, Inc., USA Alberts, B., Bray, D., Lewis, J., Ratf, M., Roberts, J at 2002. Molecular Biology of the Cell. Garland Publishing In Rastogi, S.C. 2010. Cell and Molecular Biology. New Publishers. New Delhi Ajoy Paul, 2011 Text Book of Cell and Molecular Biology. B Aninul Islam, 2011. Text Book of Cell Biology. B Pvt.Ltd.Kolkatta Prakash S. Lohar, 2019. Cell and Molecular Biology. GF 1 	nd, J. D. Watson, nc., New York. Age International plogy. Books and Books and Allied				

	,	0,	,
Web Source:	https://nptel.ac.in/courses/122103039		
web Bource.	https://nptel.ac.in/courses/102103012		

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	
Outcome	able to –	CognitiveLevel
CO1	The understand the structure and function of cell and mechanism of transportation of molecules in and out of the cell	K1, K2
CO2	Learn the role of cytoskeleton on ordering the cell division process and apoptosis.	K1,K2, K3
CO3	Know the mechanism of cell communication, signalling receptors and its pathway	K1,K2, K3, K4
CO4	Describe the genome organization, chromosome structure, functioning of coding and non coding genes, gene expression and regulation	K2, K3, K4
CO5	Learn the technique for identify, structure and function of proteins and understand the mechanism of ageing.	K2, K3, K4, K5

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Н	М	L	L	L	L	L
CO2	Н	Н	М	L	L	L	L	L
CO3	М	Н	М	Н	L	М	L	L
CO4	Н	Н	М	М	L	М	М	L
CO5	М	Н	Н	L	L	L	М	L

CORE PAPER VII: DEVELOPMENTAL BIOLOGY

Semester	П
Course Type	CORE PAPER VII
Title of the Course	DEVELOPMENTAL BIOLOGY
Course Code	NZOC23
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC23	DEVELOPMENTAL BIOLOGY	Credits: 4	Max. Marks:
NLUC25	DEVELOPMENTAL DIOLOGY	Creans: 4	100

Course Prerequisites:

The student should have a basic knowledge on embryonic developments and concepts of gamete formation also, understanding on reproductive technology.

CODE		L	Т	Р	C				
NZOC23	DEVELOPMENTAL BIOLOGY	4	-	-	4				
To have a comprehensive knowledge and get familiar with develop organism and understand the cellular mechanism.									
Course Objectives	To learn about the pattern formation and de stages.	velopme	nt of p	ostembry	onic				
Objectives	 To understand the process of regeneration, with the recent advancement of reproductive 		1	and be fa	miliar				
Unit I	ORIGIN AND BASIC CONCEPT	ГS		14 ho	ours				
of induction, bas	elopmental biology- cell theory, mosaic and reg ic concepts of developmental biology- cell ng, Potency, commitment, cytoplasmic determin	division							
Unit II	CONCEPTS OF GAMETOGENESIS			14 hours					
cleavage, blastul Spermatogenesis,e	rtilization and early development: Production a formation, gastrulation and formation c embryogenesis Oogenesis: synthesis and sto brush chromosomes, vitellogenesis.	of germ	layer	s in an	imals;				
	PATTERN FORMATION AND ORGANOO	GENESIS	5	14 hou	Irs				
Species specific sperm attraction, recognition of egg and sperm, acrosome reaction, Types of eggs and cleavage patterns: Concepts in Pattern formation, animal vegetal axis, gradients, origin, and specification of germ layers – Blastulation – Gastrulation.									
	POSTEMBRYONIC DEVELOPMENT			15 hours					
Polarity and Gradiants-Cell aggregation and differentiation in <i>Dictyostelium</i> ; axes and pattern formation in <i>Drosophila</i> - post embryonic development- larval formation- Cell proliferation-Growth hormones-Metamorphosis in insects- hormonal control of insect metamorphosis-Imaginal discs- Amphibian metamorphosis- Morphological changes in amphibian									

		1 1.4 0					
-	metamorphosis-hormonal control of amphibian metamorphosis- Environmental regulation of						
normal developme	ent; sex determination.						
Unit V	VERTEBRATE INTEGUMENT AND SKELETAL SYSTEMS	15 hours					
Regeneration in various animals. Asexual reproduction: Occurrence and forms of asexual reproduction. Regeneration: Regenerative capacity in the Animal Kingdom – Factors influencing regeneration – Stimulation and Suppression – Cryo-preservation of gametes and embryos -aging							
and senescence abnormalities – Su	- Assisted Reproductive Technology (ART) – Male infer aperovulation – IVF, ICSI, GIFT – Screening of genetic disorder	rtility – Sperm					
ReferenceBooks							
 Scott F. Gi Massachusett 	lbert. 2006. Developmental Biology, 8th edition, Sinauer ts, USA	Associates, Inc.					
 B. I. Balinsl Publishing, P 	ky. 2012. An Introduction to Embryology, 5th edition, Thoms Pvt Ltd.,	on Brooks Cole					
P S Verma a India.	& V K Agarwal. 2012. Chordate Embryology, 1 st edition, S. C.	hand Publishing,					
D.R. Khanna	, Advanced Embryology, Discovery Publishing House DPH, India	a					
 T. Subramor International 	niam, 2011, Molecular Developmental Biology, Second Edition Ltd, UK	n, Alpha Science					
	uxley and G. R. de Beer, 2015. The Elements of Experimen University Press, UK.	tal Embryology,					
T.H. Morgan India							
Bruce Carlson, Human Embryology and Developmental Biology, 2nd Edition, SPRINGER- VERLAG							
🕨 Rm Twyman	, 2003, Instant Notes Developmental Biology, Viva Books Private	e Limited, India					
Web Source:	Introduction to Developmental Biology, Prof. Subramaniam k https://nptel.ac.in/courses/102/106/102106084/]	K, IIT Madras,					

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	Cognitivo Loval
Outcome	able to –	CognitiveLevel
CO1	Understand the origin and basic concepts of developmental biology-cell theory, mosaic and regulative development, cell division, differentiation, signaling, patterning, Potency, commitment and cytoplasmic determinants.	K1, K2
CO2	Develop the knowledge of gametogenesis early development zygote formation, cleavage formation of blastula, germ layer Spermatogenesis, embryogenesis, vitellogenesis and storage of maternal transcripts, transcription of lampbrush chromosomes,	K1,K2
CO3	Familiar with the awareness of Species specific sperm attraction, recognition of egg and sperm, acrosome reaction, Types of eggs and cleavage patterns and Concept in Pattern formation.	K1,K2

CO4	Understand the developmental mechanism of polarity gradiants, cell aggregation differentiation, sex determination and pattern formation in various organisms, metamorphosis and role of hormones in environment regulation of development.	K1, K2
CO5	Aware the regenerative capacity in the Animal Kingdom in various animals, Asexual reproduction, factors influencing regeneration knowledge of cryo-preservation of gametes and enable of aging and senescence also, importance of assisted reproductive technology related with Screening of genetic disorders.	K1, K2, K4

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	Н	Н	L	L	L	L	L
CO2	L	М	Н	L	L	L	L	L
CO3	L	L	Н	L	L	L	L	L
CO4	L	Н	Н	М	L	L	L	L
CO5	М	L	М	М	L	L	L	L

CORE PAPER VIII: MICROBIOLOGY

1	
Semester	П
Course Type	CORE PAPER VIII
Title of the Course	MICROBIOLOGY
Course Code	NZOC24
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC24 MICROBIOLOGY	Credits: 4	Max. Marks: 100
---------------------	------------	-----------------

Course Prerequisites:

The student should have a basic knowledge on Prokaryotes and Eukaryotes and understanding on cell biology.

CODE:		L	Т	Р	С		
NZOC24	MICROBIOLOGY	4	-	-	4		
	To give brief history and scope of Microbio of media, staining and identification metho methods of Sterilization.	U .					
<i>c</i>	Understand the microbial pathogenesis, antibiotics types based on mode of action and their antimicrobial resistance.						
Course Objectives	To familiarize the role of microorganisms in the productivity of ecosystem - cycling of Nutrients, bio-remediation, meta-genomics, bio-conversions and food spoilage microbes and food borne pathogens.						
	To give exposure to industrially important microbes and the microbial fermentation products.						
Unit I	it I HISTORY AND DEVELOPMENT OF MICROBIOLOGY				urs		
History and Scop	be of Microbiology- Whittaker's five kingdo	om conce	ept- Cla	assificati	on of		

bacteria, fungi, yeast and virus – Ultra Structure and function of bacteria and viruses.- Media preparation Microbial cultivation composition of media, types of media, Phases of bacterial growth curve-

Unit II	STERILIZATION	14 hours					
Physical Methods	Physical Methods of Sterilization-Dry heat, moist heat, filtration, pasteurization, radiation,						
Chemical methods	of Sterilization-Methods of collection of sample - Methods	of estimation of					
microorganisms in	n soil, water and air - Isolation and identification of bac	teria- microbial					
Staining methods – Simple Staining, Grams's staining, Negative Staining, Acid fast Staining,							
Endo-spore, Capsule staining and flagellar staining Biochemical tests and fermentation tests.							
Unit III	MICROBIAL PATHOGENESIS	14 hours					

Bacterial, viral,	fungal and protozoan diseases - Host parasite interac	tion- Mode of
transmission-Con	trol and preventive measures – Antimicrobial therapy &	& antimicrobial
resistance., Classit	fication and mode of action of antibiotics.	
Unit IV	MICROORGANISMS DISTRIBUTION	14 hours
Role of microorg	ganisms in the productivity of ecosystem -cycling of Nu	trients- Carbon,
Nitrogen, Phospho	orus, Sulfur Cycles- Factors influencing the distribution of m	icroorganisms –
Metagenomics co	oncepts and significance. Food Spoilage microbes and H	Food pathogens
(bacterial, Viral, f	ungal, protozoan)	
Unit V	INDUSTRIAL MICROBIOLOGY:	16 hours
Industrially impo	ortant microorganisms – Fermentation-Definition, types	-upstream and
downstream proce	ess. Bioconversion -Bioremediation-Food and additives- Sing	gle cell protein -
Production of ind	lustrial microbial products – Antibiotics-Penicillin, ethanol-	vinegar, vitamin
B12 – Citric acid a	and glutamic acid production.	
ReferenceBooks	 Pelzar, M.J.J., Chan, ECS and Kerig, NR. 1993. Microbiand Applications. Prescott, L.M., Harley, J.D and Klein, D.A. 1999. Microb Graw – Hill. Dubey, H.C., 2004. A text book of fungi, bacteria an Publishing House. Atlas, R.M. 1995. Principles of Microbiology. Mosby - Yee Ananthanaryanan, T and Paniker, J.C.K. 2000. Microbiology Oriental Longman Ltd., Madras Rheinhemer, G. 1980. Aquatic Microbiology, John Wiley and George, W. Burns. 1980. The Science of Genetics: A Heredity, Fourth Edition, Mc Milan Publishing Co., Inc., New Tewari, 2000. Advances in Microbial Technology, APH, New Rajni Gupta and Mukherji, 2001. Microbial Technology, A 	biology, WEB Mc nd viruses, Vikas ear Book Inc. Text Book of and Sons. erg, H.S. 1980. gertown. n introduction to New York. New Delhi.
Web Source:	https://nptel.ac.in/courses/102103015 http://ecoursesonline.iasri.res.in/mod/page/view.php?id=5146 https://nptel.ac.in/courses/102105058 https://en.wikipedia.org/wiki/Antimicrobial_resistance https://courses.lumenlearning.com/microbiology/chapter/bioge cycles/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604998/	eochemical-

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	
Outcome	able to –	CognitiveLevel
CO1	Know the taxonomy and Classification of bacteria, fungi, yeast and virus – Ultra Structure and function of bacteria and viruses Phases of bacterial growth curve- Different Staining methods	K1, K2, K4
CO2	Understand the physical and chemical methods of Sterilization– Media preparation – Methods of collection of sample – Methods of estimation of microorganisms– Isolation and identification of bacteria – Biochemical tests.	K2,K4,K5
CO3	Be aware of the microbial Pathogenesis– Host parasite interaction- Epidemiology and Control of microbial diseases– Antimicrobial therapy & antimicrobial resistance, types and mode of action of antibiotics.	K1,K2,K4
CO4	Understand the ecological significance of microorganisms ecosystem - Microbial interactions between plant and animals– Metagenomics concepts-Food borne diseases and Microbial Food pathogens	K1, K2, K4
CO5	Recognize the industrially important microorganisms – Fermentation process Bioconversion –Bioremediation– Food and additives- Single cell protein - Production of industrial microbial products –	K1, K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Н	М	L	L	L	L	L
CO2	Н	Н	М	L	L	L	L	L
CO3	М	Н	М	Н	L	М	L	L
CO4	Н	Н	М	М	L	Н	Н	L
CO5	М	Н	Н	L	L	L	М	Н

CORE PRACTICAL – III - BIOCHEMISTRY & CELL AND MOLECULAR BIOLOGY

Semester	П
Course Type	CORE PRACTICAL III
Title of the Course	BIOCHEMISTRY & CELL AND MOLECULAR BIOLOGY
Course Code	NZOL21
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOL21	BIOCHEMISTRY & CELL AND	Credits: 2	Max. Marks: 100
NZOL21	MOLECULAR BIOLOGY	Cleuits. 2	WIAX. WIATKS. 100

Course Prerequisites:

The students should know the basics of biochemistry & knowledge on the cell structure and functions of various organisms.

CODE:	BIOCHEMISTRY & CELL AND		Т	Р	С
NZOL21	0	-	4	2	
Course Objectives	 To determine the biomolecules by qualitati To separate compounds by chromatograph To understand different types of cells and t To analyze the biochemical parameters of To learn the karyotyping of organisms meiosis process. 	y and pre heir struc blood.	pare bu: ture	ffers.	

List of Practical

BIOCHEMISTRY

-36 Hours

- > Preparation of Buffers: Phosphate and Citrate Buffer.
- > Qualitative analysis of biomolecules (proteins, carbohydrates and lipids).
- Estimation of protein
- Estimation of lipids
- Estimation of carbohydrates
- Estimation of Glucose
- ➢ Estimation of Urea
- Estimation of Creatinine
- > Determination of aminoacids in body fluids of cockroach using paper chromatography
- > Determination of aminoacids through thin layer chromatography.

CELL AND MOLECULAR BIOLOGY - 36 Hours

- Separation of bioactive compound by Thin Layer Chromatography
- Electrophoresis (Demonstration) Principles and utility of microscopy
- Cell size determination
- > Observation of distinguishing features of different eukaryotic cells.
- Preparation of blood smear and differential staining of blood cells.
- Identification of Blood group.

- Haemolymph Study of Cockroach
- Preparation of blood film (Thin and Thick)
- → Haemocytometery of RBC and WBC of human blood.
- > Determination of erythrocyte sedimentation rate (ESR)
- > To study different phases of mitosis in Onion root tip.
- > To study meiosis in Grasshopper testis.
- ▶ Human Buccal smear to show squamous epithelial cells
- > To study the Barr body from the smear of buccal epithelial cells (FEMALE)
- > Preparation of polytene chromosomes of Chironomous larva/Drosophila.

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	CognitiveLevel
CO1	Analyze the biomolecules in the tissue and blood samples.	K4
CO2	Separate aminoacids and bioactive compounds using chromatography technique and to estimate glucose, urea and creatinine	K2, K4, K5
CO3	Enable to handle different types of microscope used in biological research, understand the functional differentiation of eukaryotic and prokaryotic cells.	K1, K2
CO4	Acquire knowledge on the structure of blood components and blood biochemical parameters such as blood counting, grouping and ESR.	K3
CO5	Analyze the mechanism of mitosis, meiosis and enumerate the structure of polytene chromosome of chironomous larvae.	K4, K3

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	Н	L	М	М	L	L	М
CO2	L	Н	L	М	L	L	L	L
CO3	Н	Н	М	L	L	М	L	М
CO4	М	Н	М	Н	L	М	L	М
CO5	М	Н	Н	L	L	L	М	М

CORE PRACTICAL – IV: DEVELOPMENTAL BIOLOGY & MICROBIOLOGY

Semester	II Semester
Course Type	CORE PRACTICAL IV
Title of the Course	DEVELOPMENTAL BIOLOGY & MICROBIOLOGY
Course Code	NZOL22
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOL22	DEVELOPMENTAL BIOLOGY	Credits: 2	Max. Marks: 100
NZOL22	& MICROBIOLOGY	Cleuits. 2	

Course Prerequisites:

The students should know the basics of biochemistry & knowledge on the cell structure and functions of various organisms.

CODE:	DEVELOPMENTAL BIOLOGY &	L	Т	Р	С			
NZOL22	MICROBIOLOGY	0	-	4	2			
 To impart knowledge on the growth and development of an organisms. To understand the growth and metamorphosis of organisms. To know the regenerating ability in amphibians. To understand the methods of cultivating bacteria. To identify, grow and determine the antibiotic sensitivity of bacteria. 								
	List of Practicals							
	DEVELOPMENTAL BIOLOGY		- 36	Hours				
 Structure of 	of spermatozoa and egg							
Study on ty	ypes of cleavage							
 Vital stain 	ing and mounting of chick blastoderm							
Regenerati	on in Amphibians							
Study of in	sect metamorphosis							
	MICROBIOLOGY		- 36	Hours				
Preparation	n of Non-Selective and Selective culture media.							
Enumeration	on of microorganisms through spread plate and	pour plat	e metho	d.				
Staining methods: Preparation of smears for staining – Simple staining, Negative staining, Gram staining.								
▶ Identification of bacteria – Staining method – Gram positive and Gram negative bacteria.								
Measurem	ent of bacteria through microscopy.		-					
 Bacterial g 	rowth curve – Counting.							
Antibiotic	susceptibility test.							

Course Outcomes (COs):

Course Outcom		
Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	e ogener e ze i ez
CO1	Study and understand the growth and development of organisms, to know the regenerating ability of amphibian.	K1, K2
CO2	Learn the metamorphosis of insects and staining of chick blastoderm.	K2
CO3	Isolate, enumerate and cultivate bacteria.	K3, K5
CO4	Identify bacteria through various staining methods and measure the size and determine the growth of bacteria.	K4
CO5	Perform antibiotic sensitivity pattern for pathogenic bacteria.	K4

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	Н	М	L	L	L	L
CO2	Н	Н	Н	М	L	L	L	L
CO3	L	Н	L	L	L	L	Μ	L
CO4	L	Н	L	L	L	L	Μ	L
CO5	L	Н	L	L	L	L	L	L

CORE PAPER IX: COMPARATIVE ANIMAL PHYSIOLOGY

Semester	III
Course Type	CORE PAPER IX
Title of the Course	COMPARATIVE ANIMAL PHYSIOLOGY
Course Code	NZOC31
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

CODE:	COMPARATIVE ANIMAL	Creaditor 4	Max. Marks: 100
NZOC31	PHYSIOLOGY	Credits: 4	Max. Marks: 100

Course Prerequisites:

The student should have a basic knowledge on animal physiology of various animals.

CODE:	COMPARATIVE ANIMAL	L	Т	Р	С			
NZOC31	PHYSIOLOGY	4	-	-	4			
To have a comprehensive knowledge and get familiar with the biological functions, structural arrangements of various organ in animal systems.								
Course	To provide knowledge on vital physiological animals	process,	, muscle	e and end	locrine of			
Objectives	To know the biological significance of horn the respiration, circulatory process and u mechanism of organisms							
Unit I	ADAPTATION			15 h	ours			
Marine - Shores	on - Concepts of homeostasis. Physiological adapt and Estuaries – Freshwater - Extreme aquatic l environments - Parasitic habitats.							
Unit II	DIGESTION AND PHYSIOLOGICAL MEC	HANISN	M	14 h	ours			
Digestion: Absorp	tion, - Role of salivary glands, Pancreas and intestin	al glands	s in dige	estion –				
	y temperature - Physiological adaptation to osmatic							
A	estrial environments. Physiological response to oxyg xercise - Meditation, Yoga and their effects.	en defic	ient stre	ess - Phys	siological			
Unit III	RESPIRATORY PHYSIOLOGY			14 h	ours			
Structures – Respiratory gases – uptake – respiratory pigments – O2 & CO2 dissociation curves – transport of respiratory gases. Anatomy and Physiology of the respiratory tract- transport of oxygen and carbon dioxide - regulation of respiration.								
Unit IV	EXCRETORY PHYSIOLOGY			14 h	ours			
Excretory organs – mechanism of excretion – physiology – adaptations of excretion to environment – Excretory products: synthesis and elimination-Mammalian kidney - Urine formation- waste elimination - regulation of water balance - acid base balance.								

Unit V	NEUROMUSCULAR AND ENDOCRINOLOGY	15 hours				
Neurons – action potential – nerve impulse transmission – neurotransmitters – mechanism of neural						
	erve conduction- synapse- Neurotransmitters- Neurons central an	-				
•	echanisms of hormone action - endocrine glands in mammal – Pituit					
	rhans - hormones and functions – hormonal disorders - Role of reprod	luctive hormones.				
ReferenceBooks						
	and Verma, P.S. 1993.Chordate Zoology and Animal Physio	logy, S Chand and				
Company.						
	ielsen, K.1997. Animal Physiology: Adaptation and Enviro	onment. Cambridge				
University P						
•	Introduction to Animal Physiology, Kay(Ian), Bios Scientific Publ					
	2000. Physiology Edn.5 Part Ii, Verma (P.S) Etc, Aul. H Ed.Nch (J					
	all, Warren Burggren and Kathleen French, 2002. Eckert's	Animal Physiology				
	and Adaptations, 2002. W.H. Freeman & Co. Ltd.					
•	1993. Textbook of Animal Physiology and Endocrinology, Emkey I					
•	2002. Textbook of Animal Physiology With Related Biochemi	stry For B.Sc., and				
M.Sc., Stude	nts Of Zoology of All Indian Universities, Emkey Publications.					
Rastogi, S.C., 2008. Essentials of Animal Physiology, The New Age International.						
	https://onlinecourses.nptel.ac.in/noc20_bt42/preview					
	https://onlinecourses.swayam2.ac.in/cec20_bt19/preview					
Web Source:	https://www.classcentral.com/course/edx-respiration-in-the	e-human-body-3050				
	https://onlinecourses.nptel.ac.in/noc20_hs33/preview					
	https://www.classcentral.com/course/edx-comprendre-la-re	espiration-10242				

Course Outcomes (COs):

Course Outcon		
Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	cognitiveLevel
CO1:	Know the mechanism of adaptation and significance of body size, Concepts of homeostasis. Understand the adaptations of different environments and biology of Parasitic habitats.	K1, K2
CO2:	Be familiar with the Physiology Animal digestion and absorption and Role of salivary glands, importance of intestinal glands and regulation of body temperature. Know the physiological adaptation to and osmoregulation in aquatic and terrestrial environments.	K1,K2
CO3:	 Know the Structure and function of respiratory system of different animal and transport of respiratory gases. Understand the Anatomy and Physiology of the respiratory tract- transport and regulation of respiration. 	K1,K2
CO4:	Be aware of mechanism of excretion, physiology and adaptations of excretion to environment and know about excretory products. Understand the structure of mammalian kidney formation of urine, waste elimination, regulation of water and acid balance.	K1, K2
CO5:	Understand the function of neurons, nerve impulse, central	K1, K2

and Peripheral Nervous system. Know the Basic mechanisms	
of hormone action and endocrine glands in mammal.	

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	М	L	L	Н	L	L	L	L
CO2	М	L	L	Н	L	L	М	L
CO3	L	L	L	Н	L	L	L	L
CO4	Μ	L	L	Н	L	L	L	L
CO5	L	L	L	Н	L	L	L	L

CORE PAPER X: IMMUNOLOGY

Semester	III
Course Type	CORE PAPER X
Title of the Course	IMMUNOLOGY
Course Code	NZOC32
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

NZOC32 IMMUNOLOGY	Credits: 4	Max. Marks: 100
-------------------	------------	-----------------

Course Prerequisites:

Have knowledge of the Microbiology and Biochemistry of Cell.

CODE:	IMMUNOLOGY	L	Т	Р	С		
NZOC32		4	-	-	4		
Course Objectives	 To make students understand the types lymphoid organs lymphoid cells To make students learn the types of immunoglobulins, antigen antibody responses. To give a understanding on the Histocompatibility organs transplantation, To give knowledge on hypersensitivity, Complement system To make students learn the immunological diagnostic techniques 						
Unit I	TYPES OF IMMUNITY & CELLS AND O IMMUNOLOGY	ORGANS	OF	13 ho	ours		
lymphoid organs, t	Types of Immunity Innate and Acquired immunity – Lymphoid-system: Primary and secondary lymphoid organs, tissues. Cells of immune-system: lymphoid lineage, myeloid lineage. Molecules-complement, acute phase proteins, interferon, lymphokines and cytokines.						
Unit II	ANTIGENS ANTIBODY RESPON	SES		13 ho	urs		
pathogenicity- cros Antibodies and in Structure and bio polyclonal antibod monoclonal antib immunodiffusion electrophoresis- Ir	Chemical nature of antigens- epitope and paratope essential factors for antigenicity & pathogenicity- cross reacting antigen, heterophile antigens, Forssman antigens, haptens, adjuvants. Antibodies and immunoglobulin - Structure of immunoglobulin, Types of Immunoglobulin, Structure and biological properties of immunoglobulin G, M, A, D and E - Monoclonal and polyclonal antibodies - Hybridoma technology- Monoclonal antibody production and designer monoclonal antibodiesAntigen - Antibody reactions precipitation - single radial immunodiffusion –double immunodiffusion –immunoelectrophoresis – rocket immune electrophoresis- Immunofluorescence. Agglutination: haemagglutination- bacterial agglutination-passive agglutination- agglutination inhibition test - Binder- Ligand assays: RIA, ELISA, EMIT.						
Unit III	IMMUNE RESPONSE AND HYPERSENSITIVITY REACTIONS 16 hou						
Humoral immune response - Primary and secondary humoral immune response, importance of B- cells in humoral immune response (antibody formation), factors influencing antibody formation. Cell mediated immune response – cells involved in the cell mediated immune response, cytokines and their actions- Complement System Classical pathway, Alternate pathway, MBL pathway Types of hyper sensitivity – Type I, II, III, IV and V hyper sensitivity reactions.							

Unit IV	AUTO IMMUNITY & TRANSPLATATION IMMUNOLOGY	15 hours
Autoimmunity – c	auses of autoimmune diseases - Type-1Diabetes- Addison's di	sease and Graves,
disease. Immunos	timulation and Immunosuppression organ specific and system	mic auto immune
diseases – diagn	osis and treatment Autoimmune disease detection: Rhen	umatoid arthritis,
Transplantation in	nmunology - types of grafts - Histocompatibility Complex (N	MHC)-Mechanism
of graft rejection -	graft versus host reaction - immune suppression - prevention	of graft rejection
Histocompatibility	testing: HLA typing- RFLP method, PCR method: Ir	nmunodeficiency-
inherited and acqu	ired.	
Unit V	VACCINES AND DIAGNOSTIC IMMUNOLOGY	15 hours
	whole organism/live vaccines, inactivated killed / attenuated v	
	nultivalent subunit-anti idotype vaccine, designer vaccine, edi	
	ant vector vaccine; Abzymes:Detection methods of antigen	
	Ouchterlony analysis-Double immunodiffusion. Immunoelect	-
	belectric focussing Binder- Ligand assays: RIA, ELISA, EMI	
	e complex detection: Rossette Forming Assay, Plaque	Forming Assay,
complement fixation	on test.	
ReferenceBooks		
 Roitt, Ivan, Philadelphia. 	M., Brostoff, Jonathan, Male, David, K., 1998. Immu	nology, London,
-	, 2010. Elements of Immunology, CBS Publishers and Distribu	tors.
_	2018. Immunology W.H.Freeman and Company, New York.	
•	M., Lomb, M.F. and R.E.S. Cord, 1999. Fundamental Immu	inology 2nd Edn.
	Publishers U.S.A.	
	e., Gordonr Carter, 2010. Immunology, Wiley-Blackwell.	
	Essential Immunology, Delves, Wiley-Blackwell.	
	se; Robert E Lewis, 2013. Immunology Guidebook, Academic	Press
	2010. Immunology, Oxford University Press.	
	and S.K. Gupta, 2012. A hand book Practical immunology	. Second edition.
CBS publish		,
-	2004. Schum's Outlines Immunology, Tata McGraw –Hill.	
	s://nptel.ac.in/courses/102106035	
-	unology : https://www.classcentral.com/course/swayam-immu	nology-14117
	unology : https://www.eusseennu.com/course/swayani inina unology : https://swayam.gov.in/nd2_cec20_bt05/preview	nology 11117
	://www.classcentral.com/course/immunologyfundamentalsimr	nunitybcells-
https	s://www.coursera.org/lecture/immunologyfundamentalsimmun antibodies-KxBvo -	itybcells/monoclo

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	CognitiveLevel
CO1	The students will know the types of Immunity– Lymphoid- system: Primary and secondary lymphoid organs, tissues. Cells of immune-system	K1, K2
CO2	The students will know the types of antigens- Types of antibodies and properties and antigen antibody interactions	K1,K2
CO3	The students will know the Primary and secondary humoral immune response- Complement System Classical pathway, Alternate pathway- Types of hyper sensitivity.	K1,K2
CO4	The students will know the autoimmunity diagnosis and treatment Autoimmune disease- Transplantation immunology	K1, K2
CO5	The students will know the Vaccine – types Detection methods of antigens and antibodies	K1,K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Μ	L	Н	L	L	L	L
CO2	Н	Н	L	Н	L	М	L	L
CO3	М	Н	L	Н	L	L	L	L
CO4	Н	М	М	Н	L	L	L	L
CO5	М	Н	L	Н	L	L	L	L

(H-High, M-Medium, L-Low)

CORE PAPER XI: GENETICS

Semester	III		
Course Type	CORE PAPER XI		
Title of the Course	GENETICS		
Course Code	NZOC33		
Teaching Hours	72 Hours/ Semester : 4	Hours/ week	
NZOC33	GENETICS	Credits: 4	Max. Marks: 100

Course Prerequisites:

Know the basic mechanism of transmission of hereditary characters in organisms.

CODE:		L	Т	Р	С	
NZOC33	GENETICS	4	-	-	4	
Course Objectives	 Understand the transmission of hereditary Know the phenotypic and genotypic expres Learn the structure and function of genom Enable to know the mutagenic substance a Realize the structural and numerical aberra Understand the concept sex determination Know the gene expression for protein sy modifications of protein products 	ssion of g e of orgar nd their b ations ofc pattern o	gene. nisms. piologic hromos f organ	cal impac somes. nisms.	ts.	
Unit I	MENDELIAN GENETICS				ours	
Fundamental of Mendelian genetics: Principles of segregation- Rediscovery of Mendel's work- Mendelian inheritance in Human- Extension and Application of Mendelian genetics-Geneic Interaction: Types of genic interaction -Linkage and crossing over, sex linkage, sex limited and sex influenced characters.						
Unit II	GENE CLONING AND GENE MAP	PING		15 ho	urs	
Gene cloning-Role of restriction Endonucleases-Vectors- Identifying a specific clone with a specific probe-cDNA cloning-Methods of Expressing cloned genes-Manipulation of cloned genes-Protein engineering with cloned genes-Using cloned genes as probe-Analyse the base sequence of a gene-DNA sequencing-Genetic mapping-physical map- Application of gene cloning and advanced gene mapping: -use cloned genes in Medicine and Agriculture, humar genetic diseases-Human gene therapy-Protein products from transgenic organism-mapping the human genome: tools for mapping large genome.					cloned ne base of gene human	
Unit III	GENE EXPRESSION				15 hours	
gene expression.	n eukaryotes, Gene clustering, Mechanism of Translational and transcriptional control onmental effects on gene regulation. Gene silen	of regul	latory	mechani		
Unit IV	MUTATION			15 ho	urs	

Mutagens-mutagenesis, Types of mutation-Chromosomal mutation: Changes in structure (typesdeletion-duplication, inversion-translocation-variation in chromosome morphology-Changes in chromosome number (Ploidy-Euploidy-polyploidy-auto, allo and synthesized allopolyploidy)monosomy-nullisomy-trisomy-tetrasomy). Gene mutation: Morphological mutation, nutritional mutation, lethal mutation-conditional mutation- mutator genes- Mutation affect the Genetic material-Missense and non-sense mutation-spontaneous mutation-silent mutation-reversion-DNA REPAIR:DNA damage-Excision repair-mismatch repair- sickle-cell anemia, forward and reverse mutation, frame shift mutation, site directed mutagenesis. Transposonssable elementsevolutionary significance.

Unit V	POPULATION GENETICS	12hours
Introduction- Typ	pes of genetic variation-measuring genetic variation-Ha	ardy –Weinberg
Principle-Inbreeding	ng-self fertilization-inbreeding coefficient-calculating	the inbreeding
coefficient-Factors	s influencing Hardy-Weinberg equilibrium- Extension and	d application of
population genetic	S.	

Reference Book

- Lewin's, Jocelyn E. Krebs, EJijott S. Goldstein, Stephen T. Kilpatrick GENES XI.2016.Weaver and Hedrick. Genetics. Third edition-McGraw Hill Education Pvt. ltd
- > Verma, P.S. and Agarwal, V.K.2009. Genetics. S.Chand & Company PVt.Ltd.new Delhi.
- Verma, P.S. and Agarwal, V.K.2004. Cell Biology, Genetics, Molecular Biology, Evolution & Ecology. S.Chand & Company PVt.Ltd.new Delhi.
- Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., 2013. Molecular Biology of the Gene, 7th Edition, Pearson Publishers.
- Rastogi, V.B., 2019. Genetics, 4th Edition, MedTech.
- ▶ Pragya Khanna, 2020. Essentials of Genetics, Wiley Blackwell.
- Singh, B.D. 2022. Fundamentals of Genetics, MedTech Science Press.

U,	
Web Source:	https://nptel.ac.in/noc22_bt07/preview https://nios.ac.in/media/documents/SrSec314NewE/Lesson-22.pdf https://sites.ualberta.ca/~enoch/Resources/Genetics.pdf

Course Outcomes(COs):

Course Outcome	After the Completion of the Course, the student will be able to–	Cognitive Level
CO1	Understand the mechanism of Mendelian inheritance in Human, Geneic Interaction:, Linkage and crossing over.	K1, K2
CO2	Learn the gene cloning methods and their application in agriculture, medicine and disease therapy.	K1,K2
CO3	Describe the mechanism of gene expression, protein synthesis, translation and transcription.	K1,K2
CO4	Knowledge on the aware of mutagenic agents and their impact on human.	K1, K2
CO5	Gain knowledge on the inbreeding/out breeding, factors altering the gene pool and gene frequency of organisms.	K1,K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	L	М	L	L	L	L
CO2	М	Н	L	L	L	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	Н	Н	L	L	L	L	L	L
CO5	М	Н	L	L	L	L	L	L

CORE PAPER XII: BIOINSTRUMENTATION

Semester III					
Course Type	CORE PAPER XII				
Title of the Course	BIOINSTRUMENTATION				
Course Code	NZOC34				
Teaching Hours	72 Hours/ Semester : 4 Hours/ week				
NZOC34 BI	DINSTRUMENTATION Credits: 4 Max. Marks: 100				

|--|

Course Prerequisites:

The student should possess basic knowledge on the fundamentals of analytical techniques.

CODE:		L	Т	Р	C		
NZOC34	BIOINSTRUMENTATION	4	-	-	4		
Course Objectives	Objectives advanced biological techniques. > Acquire knowledge on the applications of radioisotopes in medicine.						
Unit I	MICROSCOPIC TECHNIQUE	S		14 ho	ours		
Principles and application of light, phase contrast, fluorescence microscopy, confocal – Scanning and Transmission Electron Microscopy. Preparation of animal and microbial samples for microscopy – pH meter – Centrifuge – Types of centrifuge.							
Unit II	II CHROMATOGRAPHY						
chromatography –High performance liquid chromatography (HPLC), Gas chromatography (GC), Liquid chromatography – Mass spectrometry (LC-MS) and Fast protein liquid chromatography (FPLC).							
Unit III	ELECTROPHORESIS			13 ho	urs		
General principles – Electrophoresis of proteins: SDS – PAGE, Native gels, Two dimensional gel Elecrophoresis – Isoelectro focusing – Detection and estimation of proteins – Western Blotting – Electrophoresis of nucleic acids: Agarose gel electrophoresis of DNA, PCR - DNA sequencing – NGS.							
Unit IV PRINCIPLES AND APPLICATIONS OF SPECTROSCOPY					15 hours		
UV and Visible spectroscopy – Raman spectroscopy – Flourescence spectroscopy, Atomic absorption spectroscopy – Nuclear Magnetic Resonance Spectroscopy – Turbidometry – Nephlometry							
Unit V	RADIOISOTOPES			15 ho	urs		
	lioactive decay - Types and measurement -						
	(GM) counter – Solid and Liquid Scintillation	Counter	· – Au	toradiog	aphy –		
Radioimmunoassay – Radiation Dosimetry							

ReferenceBooks

- Clifford D. Ferris, 1979. Introduction to Bioinstrumentation: With Biological, Environmental and Medical Applications, Humana Press.
- Alonso, A. and Arrondo, J.L.R., 2006. Advanced Techniques in Biophysics, Springer, UK.
- Pranab Kumar Banerjee, 2010. Introduction to Biophysisc, S. Chand & Company.
- Sabari Ghosal and A.K. Srivastava, 2010. Bioanalytical Techniques and Instrumentation, PHI Learning Private Ltd. New Delhi.
- Kothari, C.R. 2004. Research methodology: Methods and Techniques, New Age International (P) Ltd. Publishers, New Delhi.
- Abhilasha Shourie and S.S.Chapadgaonkar, 2015. Bioanlaytical Techniques, The Energy and Resources Institute.
- Sabari Ghosal and Anupama Sharma Avasthi, 2018. Fundamentals of Bioanalytical techniques and instrumentation, PHI Learning Private Ltd. New Delhi.
- Hofmann A 2018. Wilson and Walkers Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University.

Web Source: https://www.pdfdrive.com/nptel-bioanalytical-techniques- https://microbenotes.com/category/instrumentation/	
--	--

Course Outcomes (COs):

Course Outcom		
Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	
CO1	Understand various types of microscopes and its application in the field of biology.	K1, K2
CO2	Know how to separate, purify and identify bioactive metabolites/proteins using chromatographic techniques.	K1, K4
CO3	Know the techniques involved in determining the molecular weight of proteins and nucleic acids.	K4
CO4	Quantify various biological micro- and macromolecules using spectroscopy techniques.	K4
CO5	Know different methods to determine radioactivity and its application in medicine.	K2, K3, K4

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Н	М	М	L	L	L	L
CO2	L	Н	L	Н	L	L	L	М
CO3	L	Н	Н	L	L	Н	L	L
CO4	L	Н	М	М	L	М	L	L
CO5	L	L	М	L	L	L	Н	L

CORE PRACTICAL – V - COMPARATIVE ANIMAL PHYSIOLOGY & IMMUNOLOGY

Semester	III		
Course Type	CORE PRACTICAL V		
Title of the Course	COMPARATIVE ANIMAL PHYSIOLOGY & IMMUNOLOGY		
Course Code	NZOL31		
Teaching Hours72 Hours/ Semester : 4 Hours/ week			
	· · · · · · · · · · · · · · · · · · ·		
CODE			

NZOL31 PHYSIOLOGY & IMMUNOLOGY	Credits: 2	Max. Marks: 100
--------------------------------	------------	-----------------

Course Prerequisites: The students should have basic knowledge on evolution and biostatistics.

CODE:	COMPARATIVE ANIMAL PHYSIOLOGY &	L	Т	P	С		
NZOL31	IMMUNOLOGY		-	4	2		
 ► To know the vital physiological function of organism ► To acquire knowledge on the osmoregulation of organism ► To impart knowledge on Immunological technique for identifying blood group, counting of blood components and estimation of ESR ► To understand the function of immune system 							
С	OMPARATIVE ANIMAL PHYSIOLOGY		36	Hou	irs		
 Influence of Estimation o Estimation o Estimation o Estimation o Influence of Influence of Influence of Preparation o Preparation o 	 Estimation of salt gain by a fish Estimation of salt loss by a fish Estimation of Haemoglobin in frog's blood Influence of temperature on enzyme activity and measurement of activation energy Influence of pH on amylase activity Influence of substrate concentration on amylase activity Preparation of urate crystals of cockroach Preparation of haemin crystals Assay of acid/alkaline phosphatase enzyme 						
	IMMUNOLOGY		36	hour	.s		
 Haemaggluti Estimation o Blood cell co Preparation o Preparation o Preparation o Preparation o Pregnancy te Ouchterlony 	of Haemin crystals of man, rat and rrabit/guineapig. of Antigen - RBC - Demonstration.						

- Histology of Lymphoid organs Thymus, Spleen, Bone marrow, Lymph node.
- > Enumeration of lymphocytes and cells of Immune system Human blood.
- ELISA –Demonstration
- ➢ SDS-PAGE- To determine protein molecular weight
- Isolation of Plasmid DNA-Agarose Gel Electrophoresis
- ➢ Isolation of Chromosomal DNA from human blood.

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	Cognitive Level
Outcome	able to-	
CO1	Know the impact of Oxygen, temperature and salinity on living organism and estimate the RQ value of organism.	K1, K2
CO2	Acquire knowledge on enzymatic activity with aid of digestion process of an organism.	K2, K4
CO3	Learn the calculation of body mass index and correlate the energy level.	K1, K2
CO4	Understand the antibody-antigen interaction and involved the determination of blood group.	K2, K4
CO5	Describe the various immunological technique.	K1, K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	L	М	L	L	Н	L	L
CO2	Н	L	М	L	М	Н	L	L
CO3	Н	L	М	L	L	Н	L	L
CO4	Н	L	М	L	М	Н	L	L
CO5	Н	L	М	L	L	Н	L	L

CORE PRACTICAL – VI: GENETICS AND BIOINSTRUMENTATION

Semester	Ш
Course Type	CORE PRACTICAL VI
Title of the Course	GENETICS AND BIOINSTRUMENTATION
Course Code	NZOL32
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

CODE:	GENETICS AND	Credits: 2	Max. Marks:
NZOL32	BIOINSTRUMENTATION		100

Course Prerequisites: The students should have basic knowledge on mechanism of genetic interaction and basic principle of instrumentation.

CODE:			L	Т	P	С		
	NZOL32	GENETICS AND BIOINSTRUMENTATION	0	-	4	2		
	 To know the transmission of hereditary traits among individual in a family To acquire knowledge on gene pool and gene frequency To know the methods to quantify biological macromolecules by spectroscopy. To impart knowledge on separation of aminoacids and pigments using chromatography. To understand how to determine the molecular weight of proteins by electrophoresis. 							
		GENETICS		36	Hou	rs		
AAAA A	coloured bead Analyze Hard Analyze Hard Concept of Ge Analyze the of neem leaves) Analysis the fi Pedigree Anal o Transm o Transm o Transm o Transm o Muscu Preparation of Identification showing clinic	y-Weinberg equilibrium with partial selection on recessive a y-Weinberg equilibrium with complete selection on recessive enetic drift in a small population. quantitative inheritance (Height and Weight of human beinger print of class population	llele. e allele ings a	e nd Se pe ph	erratio	on of		
\triangleright	pattern. Localization o	f Barr body in the Buccal smear - squamous epithelial cells of	of fem	ale.				

- > Preparation of culture media. Culture of Drosophila Methods of maintenance.
- Sex identification of at least four mutants.
- > Serial homology in appendages of Prawn.

BIOINSTRUMENTATION

36 hours

- > Quantitative estimation of protein, lipid and carbohydrate from animal tissues.
- > Separation of aminoacids by paper chromatography.
- Separation of lipids by Thin layer chromatography.
- SDS-PAGE analysis.
- ➢ Isolation of casein from milk.
- > Counting of viable and dead cells using haemocytometer.
- > Theories and principles of AAS, HPLC and ELISA

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be able	Cognitive Level
Outcome	to-	0
C01	Know the preparation of karyotypes of metaphase chromosome of human and identify the disease causing gene by karyotyping.	K1, K2
CO2	Acquire knowledge on genetic drift or bottle neck principle operating on a small population.	K2, K4
CO3	Construct the family chart for the sex linked inheritance	K1, K2
CO4	Estimate proteins, lipids and carbohydrates in the tissue samples, Count viable and dead cells using haemocytometer.	K2, K4
CO5	Separate aminoacids by paper chromatography and proteins by electrophoresis	K1, K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	L	М	L	L	Н	L	L
CO2	Н	L	М	L	М	Н	L	L
CO3	Н	L	М	L	L	Н	L	L
CO4	Н	L	М	L	М	Н	L	L
CO5	Н	L	М	L	L	Н	L	L

ELECTIVE II: 1. ESSENTIALS OF BIOLOGICAL RESEARCH

Semester	III
Course Type	ELECTIVE II
Title of the Course	ESSENTIALS OF BIOLOGICAL RESEARCH
Course Code	NZOEE
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

NZOEE	ESSENTIALS OF BIOLOGICAL	Credits: 3	Max. Marks: 100
	RESEARCH		

Course Prerequisites:

The learner should have the understanding of the basic concepts and experimental techniques in biological science.

CODE:	ESSENTIALS OF BIOLOGICAL	L	Т	Р	С	
NZOEE	RESEARCH	3	-	-	3	
 Course Objectives Teach methods of research, designing research and data collection To teach the methods of references and significance of plagiarism To impart knowledge on project report preparation To know the personnel safety, experimental animal safety and hazardo material handling methods Know the methods and important of safe guarding intellectual properly 						
Unit I	DESIGNING RESEARCH TITI	Æ		8 ho	urs	
– Types of Researc	ch – Research methods – Designing Research –	Data Col	lection	– Data a	nalysis.	
Unit II	LITERATURE CITATION AND PLAGIARISM 12 hours				urs	
Introduction – Dif	ferent systems of citing References – Name – Y	Year syste	em – Ci	itation in	the text	
	es – Format of Reference section – Alphabetica		-		-	
	phabet to number system – references without	article –	- Journa	al abbrev	riation –	
Plagiarism and its	5					
Unit III	RESEARCH PROJECT AND REPORT			8 hou	10	
	Title – Author and address – Abstract – Summary – Synopsis – Keywords – Review of Literature					
	ials & methods – Result – Discussion – Acknowledgement – Appendixes – References.					
Unit IV	LABORATORY SAFETY AND BIOT	EHICS		12 ho	urs	
Biohazard agents – Risk groups and Biosafety levels – Lab acquired infections – Safety measures						
- Additional Hazards - Safety in Genetic Engineering - Safety of Laboratory animals - Biological						
model system – Animal welfare – CPCSEA guidelines for Laboratory Animal Facility.						
Unit V	INTELLECTUAL PROPERTY RIG	HTS		14 ho	urs	

Introduction - Protection of IPR in India - Terminology associated with IPR -	Patent – Copy right
- Trademark - Geographical Indexing - Plant variety and farmers right protect	ion – Trade secret –
Copy left - Traditional knowledge – Biodivrsity - Biopiracy	

ReferenceBooks

- Nicholas H. Steneck. 2007. Introduction to the Responsible Conduct of Research. Office of Research Integrity. Available at: https://ori.hhs.gov/sites/default/files/rcrintro.pdf
- > The Student's Guide to Research Ethics By Paul Oliver Open University Press, 2003.
- Adil E. Shamoo, David B. Resnik. 2003. Responsible Conduct of Research By Oxford University Press.
- Anderson B.H., Dursaton, Poole M. 1997. Thesis and assignment writing, Wiley Eastern.
- Bijorn Gustavii, 2006. How to write and illustrate scientific papers? Cambridge University Press.
- ▶ Bordens K.S. and Abbott, B. 2008. Research Design and Methods, Mc Graw Hill.
- Graziano, A., M., and Raulin, M.L., 2007. Research Methods A Process of Inquiry, Sixth Edition, Pearson.

Web Source:	https://www.researchgate.net/publication/316976812_ https://nptel.ac.in/courses/102103083 https://nptel.ac.in/courses/102107028
-------------	---

Course Outcomes (COs):

Course Outcom				
Course	After the Completion of the Course, the student will be	CognitiveLevel		
Outcome	able to –	CognitiveLevel		
CO1	Know the Types of Research, methods of Research,	K1, K2		
CO1	designing Research – Data Collection and analysis			
	Different systems of citing References -References without	K1,K2,K3		
CO2	article – Journal abbreviation – Plagiarism and its			
	significance			
	Title - Author and address - Abstract - Summary -	K1,K2,K3		
CO2	Synopsis – Keywords – Review of Literature – Materials			
CO3	& methods – Result – Discussion – Acknowledgement –			
	Appendixes – References			
	Bio safety levels in Lab acquired infections - Safety	K1, K2,K3		
	measures - Additional Hazards - Safety in Genetic			
CO4	Engineering – Safety of Laboratory animals – Biological			
	model system – CPCSEA guidelines for Laboratory			
	Animal Facility			
	Protection of IPR- Patent - Copy right - Trademark -	K1,K2,K3, K6		
CO5	CO5 Geographical Indexing – Plant variety and farmers right			
	protection – Trade secret – Copy left - Traditional			
	knowledge – Bio-diversity – Bio-piracy			

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	L	М	М	Н	Н	М	Н
CO2	L	L	М	М	Н	Н	М	Н
CO3	L	L	М	Н	Н	Н	Μ	Н
CO4	L	М	М	Н	Н	Н	М	Н
CO5	L	М	М	Н	Н	Н	М	Н

ELECTIVE II: 2. APPLIED ENTOMOLOGY

Semester	III
Course Type	ELECTIVE II
Title of the Course	APPLIED ENTOMOLOGY
Course Code	NZOEF
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

|--|

Course Prerequisites:

Know the basic mechanism of transmission of hereditary characters in organisms.

CODE:		L	Т	P	С
NZOEF	APPLIED ENTOMOLOGY		-	-	3
 Course Objectives Understand the general classification and structure of insects Know the importance and scope of sericulture industry, bee keeping and economic value of insects Knowledge on the pests management in various field crops Understand the application of insects for tissue culture and medicinal value 					
Unit- I	PRINCIPLES OF APPLIED ENTOMOL PEST MANAGEMENT	OGY AN	ND	12 ho	urs
Insect origin and evolution, biodiversity, Insects of economic importance. Pests -Definition, categories, causes for outbreak, general equilibrium position, economic damage, economic injury level, economic threshold level, losses caused by pests. Pest monitoring- pest surveillance, forecasting, survey and sampling techniques, crop loss estimation. Biological control- History, concepts, classical examples, natural and biological control, predators, parasitoids, entomopathogenic microorganisms, entomophagous nematodes, biopesticides, exotic biocontrol agents, augmentative and conservation biocontrol, advantages and disadvantages of biological control. Integrated pest management (IPM)-Definition, concepts, goals and strategies of IPM, key components of IPM, IPM program development and models					
UnitII	INSECT-PLANT INTERACTIONS, CH ECOLOGY AND INSECT RESISTA			12hou	irs
mechanisms- eco sequestration and pheromone olfacti management, phe insecticides, organ	interactions- Plant nutrition and secondary mological and genetic resistance, geneticall detoxification in insects. Pheromones- Ty on mechanisms, biosynthesis of pheromones, eromone traps and lures. Insecticides- N nochlorines, organophoshates, carbamates, pyronts, insect growth regulators), formulations, tox	y modif ypes, che pheromo omenclat ethroids,	fied re emical one app ure, ty inorgan	esistant characte blication ypes (sy nics, bota	plants, eristics, in pest ystemic anicals,

LT50, KD50, ED50/EC50, mode of action, safety measures, advantages and disadvantages of pesticides. Insect resistance- History of resistance, cross and multiple resistance, resistance development, resistance mechanisms and management.

Unit-IIIPRODUCTIVE INSECTS AND PESTS OF ECONOMIC IMPORTANCE12	hours
--	-------

Honey bees-Honey bee species, role of bees in pollination, bee keeping and management practices, bee products, pests and diseases of honey bees and their management. **Silkworm**-Silkworm species, silkworm rearing and management practices, pests and diseases of silkworms/host plants and their management. **Household pests**-House fly, cockroaches, bed bugs, and ants –biology, economic importance and management. **Pests of stored products**- Rice weevil, Pulse beetle, and Rice moth –biology, damage and management. **Pests of crops**- Rice, vegetables, mango, coffee, coconut, cotton and sugarcane-biology, damage and management of major pests.

major pests.				
Unit-IV	Medical entomology and parasitic diseases:	12 hours		
Vector biology a	and human parasites- Malaria, filariasis and leishmaniasis	-distribution and		
0.	s and parasites, host-parasite interactions and co-evolution, defe			
	control. Arboviral diseases- Yellow fever, dengue, and Japan	1		
	ctor biology and management. Venomous insects and Forens			
Venomous insects	and allergic reactions. Forensic entomology of human and wild	llife.		
Unit V	INSECT BIOTECHNOLOGY	6 hours		
Insect biotechnole	ogy General introduction to insect biotechnology Use of i	insects in tissue		
culture and genet	ic studies as model animalsImportance of insects in medicine	e and cosmetics		
with respect to bio	otechnology			
Reference Books				
≽ Chapman F	RF. 1998. The Insects: Structure and Function. Cambridg	ge Univ. Press,		
Cambridge.				
► David BV &	& Ananthkrishnan TN. 2004. General and Applied Entomolog	y. Tata-McGraw		
Hill, New D	elhi.			
Duntson PA	. 2004. The Insects: Structure, Function and Biodiversity. Kal	lyani Publ., New		
Delhi.				
	2004. Outlines of Agricultural Entomology. Asiatic Publ., New			
	ies RG. 1977. Imm's General Text Book of Entomology. 10th	Ed. Chapman &		
Hall, Londo	n.			
Saxena RC & Srivastava RC. 2007. Entomology: At a Glance. Agrotech Publ. Academy,				
Jodhpur.				
Snodgross RE. 1993. Principles of Insect Morphology. Cornell Univ. Press, Ithaca.				
Web Source:	https://sites.google.com/a/uasd.in/ecourse/agricultural-entomol	ogy		
web Source.	https://onlinecourses.swayam2.ac.in/cec20_bt02/preview			

Course Outcomes(COs):

Course Outcome	After the Completion of the Course, the student will be able to-	Cognitive Level
CO1	Describe the bee keeping technique and their management.	K1, K2
CO2	Learn the biology and rearing aspects of silkworm.	K1,K2
CO3	Learn the economic importance of various insects	K1,K2
CO4	Construct the package of pests management practices of agricultural crops	K1, K2
CO5	Learn the biotechnological application of insects.	K1,K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	L	М	L	L	L	L
CO2	М	Н	L	L	L	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	Н	Н	L	L	L	L	L	L
CO5	М	Н	L	L	L	L	L	L

ELECTIVE II: 3. BIOFOULING AND BIOREMEDIATION

Semester	III	Ш				
Course Type	ELECTIVE II					
Title of the Cours	e BIOFOULING AND BIO	BIOFOULING AND BIOREMEDIATION				
Course Code	NZOEG	NZOEG				
Teaching Hours	54 Hours/ Semester : 3 Ho	54 Hours/ Semester : 3 Hours/ week				
CODE:	BIOFOULING AND	Credits: 3	Max. Marks: 100			
NZOEG	BIOREMEDIATION	Credits: 5	IVIAX. IVIACKS: 100			

Course Prerequisites:

The student should have basic knowledge on marine ecosystem and its biological importance.

		т	Т	р	C		
CODE: NZOEG	BIOFOULING AND BIOREMEDIATION	L 3	1	Р	C 3		
NZUEG			-	-	_		
Course Objectives							
Unit I	BIOFOULING PROCESS			10 h	ours		
Conditional film f	formation – Primary, Secondary and Tertiary	colonizer	s – Bo	ring org	anisms -		
Composition – Di	versity – Factors influencing settlement of man	ine foule	rs and	borers in	tropical		
sea – Microbiologi	ically influenced corrosion (MIC)				-		
Unit II	IMPACTS OF BIOFOULING			10 ho	ours		
Introduction to fou	lling organisms - Geographical distribution and	problem	s of fou	ling org	anisms –		
in the power statio	ons – Navigation and other coastal installations	– Aquacu	ulture (c	cages and	ł pens) –		
Invasive Aquatic s	pecies - Global economic loss.						
Unit III	ANTIFOULING 12 hours				ours		
History and Deve	story and Development of antifouling – Toxic antifoulants (Copper and Tin) – Booster biocide -						
Toxicity on Non ta	argeted and non-targeted marine organisms – S	ex revers	al– Ant	ifouling	methods		
– IMO regulation	- Natural product antifoulants: Antifouling co	mpounds	from n	narine o	rganisms		
(corals, sponges, g	orgonians and ascidians), marine plants (seawe	eds, seag	rass and	l mangro	oves) and		
marine microorgar	nisms (Bacteria, actinomycetes and fungi).						
Unit IV	MARINE POLLUTION				ours		
Sources of marine	pollution – transport path – dynamics – cor	nposition	of dor	nestic, ii	ndustrial,		
agricultural and aq	agricultural and aquaculture discharges – their composition and impact in the marine environment –						
Oil pollution: sour	rces and fate of oil, composition and toxicity	of oil, bi	ologica	l effects	- Waste		
dumping, mining a	and dredging operations and their impacts in ma	rine orga	nisms.				
Unit V	BIOREMEDIATION 11 hours			ours			

Bioremediation – Types (Biostimulation, Bioaugmentation and Intrinsic bioremediation) – Xenobiotics, Heavy metals - Phytoremediation – Biotransformation – Biodegradation: Pesticides and Hydrocarbons - Microbially Enhanced Oil Recovery – Bioethanol and Biogas Production - Wastewater treatment - Domestic sewage and Industrial wastewater

ReferenceBooks

- Ronald M. Atlas and Richard Bartha, 1997. Microbial Ecology, Benjam Cummings Publishing Company, USA.
- Fingerman, M., Nagabhusanam, R. and Thompson, M. F., 1997. Recent advances in Marine Biotechnology, Oxford and IBH Publishers.
- Landis, W.G. and W.G. Yu., 2004. Introduction to Environmental Toxicology, Lewis Publishers, A CRC company.
- Singh, D.P. and S. K. Dwivedi, 2005. Environmental microbiology and Biotechnology, 1st Edition, New Age International Private Ltd., New Delhi.
- Kumar, A. 2008. Aquatic Environment and Toxicology, Daya Publishing House, ISBN-13: 9788170353126.
- Jeffrey Peirce, J., Ruth, F., Weiner, P. and A. Vesilind., 2015. Environmental Pollution and Control (4th Edition), Elsevier.
- Ram Chandra, 2015. Advances in Biodeterioration and Bioremediation of Industrial waste, CRC Press.
- Surajit Das and Hirak Desh, 2021. Microbial biodegradation and Bioremediation, Elsevier.

Web Source:	https://microbenotes.com/bioremediation/
web Source.	https://www.imo.org/en/OurWork/Environment/Pages/Biofouling.aspx

Course	Outcomes	(COs):
--------	----------	-----------------

Course Outcom			
Course	After the Completion of the Course, the student will be	CognitiveLevel	
Outcome	able to –		
CO1	Understand the stages and factors influencing the process of biofouling in the marine environment. K1, K2		
CO2	Know the distribution of fouling organisms, impacts and economic loss pertained to biofouling.	K2	
CO3	Learn about the toxicity of antifouling biocide on marine organisms and natural product antifoulants.	K4, K5	
CO4	Acquire knowledge on the sources, composition and toxicity of various pollutants on marine biota.	K2	
CO5	Understand the process of utilizing promising microbes to clean up the environmental pollutants.	K3, K4	

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Н	L	L	L	Н	Н	L
CO2	Н	Н	L	L	М	L	Н	L
CO3	L	L	L	L	Н	М	Н	L
CO4	L	L	L	М	L	L	Н	L
CO5	Н	М	L	L	М	L	Н	L

ELECTIVE II: 4. FISH PROCESSING TECHNIQUES

Semester	III
Course Type	ELECTIVE II
Title of the Course	FISH PROCESSING TECHNIQUES
Course Code	NZOEH
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

CODE: NZOEH FISH PROCESSING TECHNIQUES	Credits: 3	Max. Marks: 100
---	------------	-----------------

Course Prerequisites:

The student should have a basic knowledge on fish biology.

CODE:		L	Т	Р	С		
NZOEH	FISH PROCESSING TECHNIQUES	3	-	-	3		
Course Objectives							
Unit I	FUNCTIONAL PROPERTIES OF SEAF	TOODS		10 ł	iours		
Functional properties of seafood proteins: Solubility, emulsification, viscosity, water holding, stability- Sarcoplasmic proteins: Heme proteins, Myoglobin, Hemocyanins, parvalbumins, antifreeze proteins, pigments, enzymes- hydrolases, oxidoreductases- Collagen in fish muscle-skin characteristics of seafood collagen.							
Unit II	FREEZING TECHNIQUES			10 ł	nours		
various freezing n	pects of freezing: Slow and rapid freezing, Me nethods, selection of a freezing method, product p Determination of freezing points from time- tem	processi	ng, pac	kaging a	nd different		
Unit III	FISH CANNING AND SPOILAGE 10 hours				nours		
Introduction to canning and its historical developments-Advantages of canning in relation to other preservation methods- Raw materials and sub materials, their characteristics and suitability for canning- Spoilage of canned foods - types, causes and preventive measures-hygiene and sanitation and waste disposal.							
Unit IV	PACKAGING AND TRANSPORTATION			12 ł	nours		
Introduction to packaging-Importance of packaging in fish processing, functions, objectives and requirements- Properties of packaging materials- Types of packaging materials for canned foods, metal containers (Tin Plate, TFS, Aluminium cans) and retortable pouches- Safety and legislation aspects of packing- Labelling and bar coding- Principles of packaging fresh produce handling and transportation- Transportation of frozen fish-Packaging for retail sale and storage.							
Unit V	FISH BY PRODUCTS AND WASTE UTILIZATION12 hours				nours		

Fish meal: Dry reduction and wet reduction methods specification of storage-Fish oil body oil liver oil extraction purification preservation storage application-Fish silage acid silage fermented silage application-Fish maws, fish glue, fish gelatin, isinglass, pearl essence- Shrimp wastes chitin, chitosan-production uses-Biochemical and pharmaceutical products.

Reference Books

- > Clucas IJ. 1981. Fish Handling, Preservation and Processing in theTropics. Parts I, II. FAO.
- Andrew CC. 1990. Food Refrigeration Processes. Elsevier.
- Regenssein JM & Regenssein CE. 1991. Introduction to Fish Technology. Van Nostrand Reinhold.
- ▶ Hall GM. (Ed). 1992. Fish Processing Technology. Blackie.
- KK. 2001. Post-harvest Technology of Fish and Fish Products. Daya Publ. House.Balachandran KK. 2001. Post-harvest Technology of Fish and FishProducts. Daya Publ. House.
- ➤ Gopakumar K. (Ed.). 2002. Text Book of Fish Processing Technology.ICAR.
- ➢ Nambudiri DD. 2006. Technology of Fishery Products. Fishing Chimes.

Web Source:	 https://www.youtube.com/watch?v=e9kZmwRZHas https://www.youtube.com/watch?v=At4dDZQbnoA
-------------	--

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	~
Outcome	able to –	CognitiveLevel
CO1:	Understand the functional properties of seafood proteins and know the pigments, enzymes, hydrolases, oxidoreductases, collagen and skin characteristics of seafood.	K1, K2
CO2:	Be familiar with the technological aspects of freezing, processing, packaging - Determination of freezing points from time- temperature plots- preparation of fish for freezing.	K1,K2
CO3:	To know the advantages of canning in relation to other preservation methods and understand the soil age of canned foods - types, causes and preventive measures- hygiene and sanitation and waste disposal.	K1,K2
CO4:	Understand the Importance of packaging in fish processing, - Properties of packaging materials, Labelling and bar coding - methods of transportation of frozen fish.	K1, K2
CO5:	Know the procedure on fish liver oil extraction, purification, preservation, storage application. Usage of shrimp wastes chitin, chitosan-production and its pharmaceutical importance.	K1, K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	L	L	L	L	L	L	Н
CO2	L	L	L	L	L	L	L	Н
CO3	L	L	L	L	L	L	L	Н
CO4	L	L	L	L	L	L	L	Н
CO5	L	L	L	L	L	L	L	Н

CORE PAPER XIII: EVOLUTION

Semester]	V					
Course Type	(CORE PAPER XIII					
Title of the Cou	urse l	EVOLUTION					
Course Code	1	NZOC41					
Teaching Hou	rs 7	72 Hours/ Semester : 4 Hours/ week					
NZOC41		EVOLUTION	Credits: 4	Max. Marks: 100			

Course Prerequisites:

The student should possess basic knowledge on the animal evolution.

CODE:		L	Т	Р	С	
NZOC41	EVOLUTION		-	-	4	
Course Objectives	 To understand the basic concepts on evolution. To know mechanism of evolutionary changes in living system. To study the evolutionary patterns of animals at molecular level. 					
Unit I	THEORIES OF EVOLUTION			15 h	ours	
Biological species epoch. Human ev	Emergence of evolutionary theories Lamarck – Neo-Lamarckism – Darwin – Neo-Darwinism – Biological species concepts – evolutionary synthesis – evolutionary time scale – eras – periods – epoch. Human evolution: Stages of primate evolution including <i>Homo</i> . Behavioral Evolution: Altruism and evolution – Group selection and kin selection – Cultural evolution of Human.					
Unit II	MOLECULAR EVOLUTION			14 h	ours	
variation - Origin	olution - Evolution of gene families, Molecular of higher categories - Phylogenetic gradualis -evolution – speciation.					
Unit III	PHYLOGENETIC METHODS TO EST EVOLUTION	TIMATE	1	14 h	ours	
methods, maximum evolutionary conse	How to construct phylogenetic tress? - Phylogenetic inference –Distance methods ,parsimony methods, maximum likelihood method - Immunological techniques – Regulatory genes and their evolutionary consequences – Molecular clock.					
Unit IV	DNA BARCODING			15 h	ours	
Amino acid sequences and phylogeny - Nucleic acid phylogeny-DNA-DNA hybridizations, Restriction Enzyme sites, Nucleotide sequence comparisons and homologies – DNA barcoding in molecular evolutionary study.						
Unit V	EVOLUTIONARY ECOLOGY			14 h	ours	
Metapopulations - Monitoring natural populations - Why small populations become extinct? - Loss of genetic variations - Conservation of genetic resources in diverse taxa – Artificial evolution (<i>in vitro</i>) – Application of Artificial Intelligence in Animal Ecology.						

ReferenceBooks

- Chiarelli, A.B. 1973. Evolution of Primates, Academic Press.
- Daniel L. Hartl, 1980. Principles of population Genetics, Sinauer Associates, Inc., Publishers, USA.
- Berry, R.J., Crawford, T.J., Hewitt, G.M., 1992. Genes in Ecology, Cambridge University Press.
- Dan Graur and Wen-Hsiung Li, 2000. Fundamentals of molecular evolution (2nd Edition), Sinauer Associates, Inc., Publishers, USA.
- Yadav, B.N. and Kumar, D., 2000. Vertebrate zoology and evolution. Daya Publishing Co.
- Andrew Cockburn, 2001. An introduction to evolutionary ecology (2nd Edition), Wiley Blackwell.
- Cain, A.J., 2016. Animal species and their evolution. Princeton University Press.
- Pandian, T.J., 2021. Evolution and speciation in Animals, CRC Press, NY.

Web Source:	https://www.biologyonline.com/dictionary/phylogeny https://bio.libretexts.org/Courses/Butte_College/BC%3A_BIOL_2 _Introduction_to_Human_Biology_(Grewal)/Text/09%3A_Biological_Evolution/ 9.2%3A_Darwin%2C_Wallace%2C_and_the_Theory_of_Evolution_by_Natural_ Selection
-------------	---

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	
CO1	Understand the history and theories of evolution.	K1, K2
CO2	Study the evolutionary changes of an organism at molecular level.	K3, K4
CO3	Acquire knowledge on analyzing the evolutionary relationship between the organisms using different phylogentic methods.	K4
CO4	Know the method to identify a species through DNA barcoding.	K2, K4
CO5	Know the genetic variation among organisms and application of artificial intelligence in animal ecology.	K3, K4, K5

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	Н	М	L	L	Н	L	L
CO2	Н	М	L	L	М	Н	L	L
CO3	Н	L	L	L	М	L	L	L
CO4	Н	L	L	L	М	Н	L	L
CO5	Н	L	М	L	М	М	L	L

CORE PAPER XIV: BIOSTATISTICS & COMPUTER APPLICATION

Semester	IV
Course Type	CORE XIV
Title of the Course	BIOSTATISTICS & COMPUTER APPLICATION
Course Code	NZOC42
Teaching Hours	72 Hours/ Semester : 4 Hours/ week

CODE:	BIOSTATISTICS & COMPUTER	Credits: 4	Max. Marks: 100
NZOC42	APPLICATION	Creans: 4	Max. Marks: 100

Course Prerequisites:

The student should have a basic knowledge on Computational biology and statistics

		L	Т	Р	С			
BIOSTAT	ISTICS & COMPUTER APPLICATION	4	-	-	4			
	To impart knowledge on the application of statistical tool in research and other surveillance programme.							
Course	> To know the sampling pattern, collection, ma	intenan	ice and	analysis	of data.			
Objectives	To acquire the knowledge on computer open by using statistical and bioinformatics software			abase ma	anagement			
Unit I	POPULATION AND SAMPLE			13	nours			
Graphical represe	pulation-variables-Types of variable-accuracy ntation of data using simple statistics-Sampling m on frequency distribution- continuous frequency lling of data.	ethods-	Diagrai	ms and g	raphs: types			
Unit II	STATISTICAL METHODS			14 hours				
probability-Proba	tral tendency and Average: objectives and types bility distributions (Binomial, Poisson and nor val – Errors - Levels of significance- Chi square	rmal) -	Sampl	ing distr	ribution			
Unit III	TEST OF SIGNIFICANCE			14 hours				
Student's t- test-Regression and Correlation – Karl pearson's coefficient of correlation-Analysis of frequencies t-test - Analysis of variance – Principle and Types of ANOVA (One and Two way analysis of variance) – Applications of ANOVA.								
Unit IV	SOFTWARE TOOLS AND PACKA	GES		16 l	nours			
	nming: ORIGIN PRO-SPSS:Introduction-Data ANOVA with SPSS-Multible comparison test ast tool.			•				
Unit V	OPERATING SYSTEMS AND APPLICA	S	15 hours					

Classification of computers - Hardware components - Input devices – Output devices - Memory devices –Industrial application- Digital information processing- Database management - Internet and its applications. Statistical software packages- Operating system – Windows - Computer applications - Office automation- Library Information System.

Reference Books

- ➤ Zar, J.H. 1984. Biostatistical analysis. (2nd Edn.), Prentice Hall International Inc.
- Hunt, R. and J. Shelley.1988. Computers and common sense. Prentice-hall of India Pvt. Ltd. New Delhi.
- Bailey, N.T.J. 1997. Statistical Methods in Biology, III Ed., Cambridge University Press, New York.
- Milton, J.S. 1992. Statistical methods in Biological and Health Sciences. Mc Graw Hill Inc., New York.
- Claverie, J.M. and Notredame C. 2003 Bioinformatics for Dummies. Wiley Editor.
- Setubal, J. and Meidanis, J. 1996 Introduction to Computational Molecular Biology. PWS Publishing Co., Boston.
- > Letovsky, S.I. 1999 Bioinformatics. Kluwer Academic Publishers.
- Baldi, P. and Brunak, S. 2001 Bioinformatics: The machine learning approach, The MIT Press.
- ▶ Rajathi. A. and P.Chandran.2010. SPSS for you. MJP Publishers, Chennai 600005.

Web Source:	http://genome.ucsc.edu https://www.youtube.com/watch?v=2zLn-RngMU4

Course Outcomes (COs):

Course Outcom		
Course	After the Completion of the Course, the student will be	CognitiveLevel
Outcome	able to –	Coginerverer
	Know the variables, sample value and population, types of	
CO1:	variable. Understand the graphical representation of data	K1, K2,K3,K5
	using simple statistics. Analysis the Sampling methods and	
	types of diagrams, graphs, frequency distribution.	
	Know the measures of central tendency and average,	
CO2:	objectives and types of average. Understand the types of	K1,K2,K5
02.	probability, Sampling distribution, confidence Interval and	111,112,113
	Levels of significance, and application of Chi square test.	
	Familiar with the awareness of student's t- test, Regression	
CO3:	and Correlation, Karl pearson's coefficient of correlation-	V1 V2 V2
005:	Analysis of frequencies t-test, Analysis of variance	K1,K2,K3
	Principle of ANOVA and Applications of ANOVA.	
	Perceive the dynamic programming of BLAST, FASTA	
CO4.	and Application of BLAST tool in phylogenetic analysis.	
CO4:	Be aware of ORIGIN PRO, SPSS and One way ANOVA	K1, K2, K6
	with SPSS in multible comparison test.	
	Understand the classification and hardware components of	
CO5:	computers and application of Industrial and digital	
003.	information processing. Understand the Database	K1, K2
	management and statistical software packages also, know	
	the operating library Information System.	

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	L	L	L	L	М	L	L	L
CO2	L	L	L	L	М	L	L	L
CO3	L	L	L	L	М	L	L	L
CO4	L	L	L	L	М	М	L	L
CO5	L	L	L	L	М	L	L	L

ELECTIVE II - COMPUTATIONAL BIOLOGY (E-PATHSALA-2)

Semester	IV
Course Type	ELECTIVE II
Title of the Course	COMPUTATIONAL BIOLOGY (E-PATHSALA-2)
Course Code	NZOEPB
Teaching Hours	54 Hours/ Semester : 3 Hours/ week

NZOEPB	COMPUTATIONAL BIOLOGY	Credits: 3	Max. Marks: 100
NZUEPB	(E-PATHSALA-2)	Credits: 5	Max. Marks: 100

Course Prerequisites:

Have knowledge of the Microbiology and Biochemistry of Cell.

CODE:	COMPUTATIONAL BIOLOGY (E-	L	Т	Р	С			
NZOEPB	PATHSALA-2)	3	-	-	3			
Course Objectives	 To make students understand the types lymphoid organs lymphoid cells To make students learn the types of immunoglobulins, antigen 							
Unit I	P BIOLOGICAL DATABASES			7 ho	urs			
GoalDriven Datal	ological Databases - Primary and Secondary bases, Data Format-Data Generation & Ass Il Databases-Case studies							
Unit II	SEQUENCE ANALYSIS			12 ho	ours			
Implementation o Algorithm-Gap Comparison(Nucle Multiple Sequence	results: Pairwise sequence alignment-Edit f the Global Alignment Algorithm-Implemen penalties-Accuracy of Multiple Sec eic Acid/Protein sequences) and interpretation e Alignment Algorithms- Multiple Alignmen Alignment-Scoring Matrices for Sequence Alig	ntation of quence of results: ts based of	the Alig Mult on Su	Local Al nments-S ciple Alig im of Pa	ignment equence nments-			
Unit III	DATABASE SEARCHING-PATTEN REC	COGNITI	ON	10 ho	ours			
FASTA family of Chemoinformatics functional descrip	Sequence-based Database Searches - Text Sear program- Pattern Recognition Methods in Sec & Chemical databases-Graph Theory Base otors- Chemical Descriptors-Relationships be (QSAR & QSPR)Case studies.	quence Ana ed Approa	alysis ach to	Introdu	action to als and			
Unit IV	PHARMACOPHORE GENERAT	ION		10 ho	ours			
generation-pharma approaches to Che	ycle-Introduction to Ligand Based design- Liga cophore based 3DSearching Database, Virtu mical Database Searching- Molecular Docking D QSAR methodologies - 3D QSAR & Data	al Screeni - Types of	ing-Tl QSA	hree dim R method	ensional ds – 2D,			

ADME & Toxicity	-Case studies.	
Unit V	MOLECULAR MODELLING	15 hours
Structure of Protect of Predicted Mode Structure based D Structure Based D Flexibility of protect Solvation model in from Structure - Genomics/GWAS,	in Structure Prediction, Advantages and Disadvantages, Predic ins-I: Secondary Structure Prediction-Tertiary structure predic el, Introduction to Molecular Dynamics, Origin of Force Field Designing- Interaction of Active site-Structure Based Design Docking- Scoring Functions-Potential Energy Surface-Molecu eins-Effect of solvation and electrostatics in molecular simulati in Molecular design Free Energy & Entropy of Biomolecules- Introduction to Omics & Genomics, High throughput Proteomics, Transcriptomics and Metabolomics, metabol	ction- Refinement ds-Introduction to n of Compounds- ilar Simulation & on-Application of Inferring Function gene annotation/
biologyCase stud	nes.	
ReferenceBooks ≻ Lesk, A.M. edition.	2014. Introduction to Bioinformatics; Oxford University Pre	ess, UK, Fourth
House USA.	nney, 2016. "Bioinformatics: Principles and Analysis"; Syrav	_
Databases"; → David Mour	l, 2003. Sequence Analysis in a Nutshell – A Guide to Co O'Reilly; I edition, ISBN-13: 978-0596004941. nt, 2004, "Bioinformatics: Sequence and Genome Analysis	
➢ Ole Lund, N	atory Press, US Revised Edition. lielsen, M., Lundegaard, C. Kesmir, C. and Brnak, S., 2005. cs"; The MIT press.	Immunological
 Jean-Michel, Sons, Second 	Cand Notredame, C. 2006. "Bioinformatics for Dummies" l Edition.	
and Protein"	Batevanis, 2006. "Bioinformatics: A Practical Guide to the A ; Wiley Inter Science, Singapore, 3rd Edition.	
Springer, Re	Leach & Valerie J. Gillet, 2007. "An Introduction to Cher vised Edition.	
➢ Baxevanis, A	rd, 2007. "Plant Bioinformatics": Methods and Protocol, Huma A.D. and Francis Ouellellette, B.F. 2011. "Bioinformatics –a p of Genes and Proteins"; John Wiley & Sons, UK, Third Edition	ractical guide to
➢ Hossein G. C	Gilani, Katia G. Samper, Reza Khodaparast Haghi, 2012. "Cho pontrol and Computational Techniques"; Apple Academic Press.	emoinformatics:
 Caroline St C Publishers, In 	Clair, Jonathan E. Visick, 2013. "Exploring Bioinformatics"; Jonc; 2nd Edition, ISBN-13: 978-1284034240.	
Wah Sourca	https://nptel.ac.in/courses/102106035 https://epgp.inflibnet.ac.in/ahl.php?csrno=3-	

Course Outcom									
Course	After the Completion of the Course, the student will be	CognitiveLevel							
Outcome	able to –	- 8							
	Know the various Databases in Biology- Data Format-Data								
CO1	Generation & Associated Organization-Structural	K1, K2							
	Database-Chemical Databases.								
	Shall know the Two sequence alignment:- Sequence								
CO2	Comparison-Multiple Sequence Alignments-Sequence	K1,K2							
	Comparison- and Matrices for Sequence Alignment								
	Database Searching -Text Search and BLAST-the BLAST								
	family of program- Pattern Recognition Methods in								
	Sequence Analysis Introduction to Chemoinformatics&								
CO3	Chemical databases-Graph Theory Based Approach to	K1,K2							
	chemicals and functional descriptors- Chemical								
	Descriptors-Relationships between chemical structure and								
	biological activity (QSAR & QSPR)								
	Introduction to Ligand Based design- Ligand based design:								
	pharmacophore generation-pharmacophore based								
CO4	3DSearching Database,-Three dimensional approaches to	K1, K2							
	Chemical Database Searching- 3D QSAR & Data driven								
	Predictions- Prediction of ADME & Toxicity								
	Prediction of 2D & 3D Structure of Proteins-I: Secondary								
CO5	Structure Prediction Tertiary structure prediction High								
CO5	throughput gene annotation/ Genomics/GWAS, Proteomics,	K1,K2							
	Transcriptomics and Metabolomics, metabolic modeling in								
	biology-Metabolic modeling in biology								
		1							

Course Outcomes (COs):

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	М	L	М	L	L	L	L
CO2	М	Н	L	L	L	L	L	L
CO3	Н	L	L	М	L	L	L	L
CO4	Н	Н	L	L	L	L	L	L
CO5	М	Н	L	L	L	L	L	L

CORE PRACTICAL – VII – EVOLUTION & BIOSTATISTICS AND COMPUTER APPLICATIONS

Semester	IV					
Course Type	CORE PRACTICAL VII					
Title of the Course	EVOLUTION & BIOSTATISTICS AND COMPUTER					
The of the Course	APPLICATIONS					
Course Code	NZOL41					
Teaching Hours	72 Hours/ Semester : 4 Hours/ week					

Course Prerequisites:

The students should have basic knowledge on evolution and biostatistics.

CODE:	EVOLUTION & BIOSTATISTICS AND	L	Т	Р	С
NZOL41	COMPUTER APPLICATIONS	-	-	4	2
Course Objectives	Dbjectives To impart knowledge on evolutionary significance of org To understand how to evolve the new species and pattern				
	EVOLUTION				
 Geological t 	ime scale				
Evolutionary	Experiment : Chemical origin of life -Urey Miller experime	nt			
Speciation					
- Allopa	tric, parapatric, sympatric				
- Darwir	n finches, HMS Beagle				
Evolution of	man, reptiles, birds, horse, elephant, dinosaur				
Connecting					
	da – Arthropoda				
	reptiles				
Evidence of					
	ogous and Analogous				
	evidence				
	fossil – Limulus				
> Phylogenetic					
Molecular c	lock				
BIOST	ATISTICS AND COMPUTER APPLICATION	,	36 ho	urs	
Binomial dis	tribution using two coins				
	tribution using three coins				
	t of central tendency: mean, median and mode				
Test of signi	ficance: t-test, Chi-Square test				

- Standard deviation and standard error of mean
- > ANOVA; One way ANOVA and two way ANOVA
- Correlation Coefficient
- Rank Correlation Coefficient
- Regression Analysis; height and weight relationship of students and Length and weigh relation of fish.
- Structuring data for use in SPSS
- Different types of graph using ORIGIN software

Presentation of data in the form of diagram Pie chart, Bar diagram, Histogram, Pictogram, Cartogram, Line graph, Scatter plot, Frequency curve, Polycon

Course Outcomes (COs):

Course	After the Completion of the Course, the student will be	Cognitive Level
Outcome	able to-	
CO1	Know the evolutionary history of living system and understand the connecting link between the phyla.	K1, K2
CO2	Acquire knowledge on the construction of phylogenetic tree to understand the evolutionary history.	K2, K4
CO3	Apply the statistical tools in the biological research	K1, K2
CO4	Understand the variation among the sample by statistical method.	K2, K4
CO5	Learn the test of significance of variable, goodness of fits, ANOVA, regression and correlation coefficient between the variables.	K1, K2

K1- Remember; K2- Understand; K3- Apply; K4- Analyze; K5- Evaluate; K6- Create.

Mapping with PSO:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	Н	L	М	L	L	Н	L	L
CO2	Н	L	М	L	М	Н	L	L
CO3	Н	L	М	L	L	Н	L	L
CO4	Н	L	М	L	М	Н	L	L
CO5	Н	L	М	L	L	Н	L	L